
SimHydro 2019, 12-14  June 2019, Sophia Antipolis – Foehn et al. - Application of an Ensemble Kalman filter to a semi-distributed 

hydrological flood forecasting system in alpine catchments 

 

APPLICATION OF AN ENSEMBLE KALMAN FILTER TO A SEMI-

DISTRIBUTED HYDROLOGICAL FLOOD FORECASTING SYSTEM IN 

ALPINE CATCHMENTS 

Alain, Foehn1 

Plateforme de Constructions Hydrauliques, Faculté de l'Environnement Naturel, Architectural et Construit 

(ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Suisse 

alain.foehn@alumni.epfl.ch 

Anne, Schwob 

Plateforme de Constructions Hydrauliques, Faculté de l'Environnement Naturel, Architectural et Construit 

(ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Suisse 

anne.schwob@epfl.ch 

Damiano, Pasetto 

Laboratoire d’écohydrologie, Faculté de l'Environnement Naturel, Architectural et Construit (ENAC), Ecole 

Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Suisse 

damiano.pasetto@alumni.epfl.ch 

Javier, García Hernández 

Centre de recherche sur l’environnement alpin (CREALP), Sion, Suisse 

javier.garcia@crealp.vs.ch 

Giovanni, De Cesare 

Plateforme de Constructions Hydrauliques, Faculté de l'Environnement Naturel, Architectural et Construit 

(ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Suisse 

givoanni.decesare@epfl.ch 

KEY WORDS 

Data assimilation, hydrological modelling, data uncertainty, data perturbation 

ABSTRACT 

One of the key success factors for hydrological forecasts is initial conditions that represent well the conditions of the 

simulated basin at the beginning of the forecast. Real-time Data Assimilation (DA) has been shown to allow improving 

these initial conditions. In this article, two DA approaches are compared with the reference scenario working without 

DA (Control). In both approaches, discharge data at gauging stations are assimilated. In the first approach, a volume-

based update (VBU) compares the simulated and observed volumes over the past 24 hours before the start of a forecast 

to compute a correction factor used to update the initial soil water saturation in the upstream part of the semi-

distributed hydrological model. In the second approach, an ensemble Kalman filter (EnKF) is implemented to account 

for the uncertainty in initial conditions, precipitation, temperature and discharge data. The comparison is carried out 

over two sub-basins of the Upper Rhone River basin upstream of Lake Geneva, in Switzerland, where the MINERVE 

flood forecasting and management system is implemented. Results differ over the two studied basins. In one basin, the 

two DA simulations perform better than the Control simulation, with the EnKF simulation providing the best 

forecasting performance. In the second basin, where the Control simulation performs best, possible challenges with 

hydropower-based discharges are highlighted. 
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1. INTRODUCTION 

Severe flooding events in recent decades have increased the need for reliable forecasting systems in Alpine 

catchments. Following the major flood of October 2000 in the Canton of Valais (Switzerland), an operational 

forecasting system (MINERVE) has been set up in 2013 and provides a tool for decision-making tasks 

[Jordan2007, García2011, García2014]. 

 

 Despite efforts on the calibration of the model, hydrological forecasts are subject to a number of 

uncertainties [Srikanthan2008]. First, meteorological inputs suffer from uncertainties both on the 

measurements and the meteorological forecast. This is true for the precipitation, but also for the temperature 

that can be difficult to estimate accurately in alpine catchments. Second, the model represents a 

simplification of the real system which implies errors in the simulated discharges. Third, the discharge 

measurements also suffer from uncertainties. All these uncertainties must be considered when analyzing the 

performances of a hydrological forecasting system. 

 

 Data assimilation (DA) techniques are mathematical tools developed to correct the model results using 

available system observations and taking into account explicitly the different sources of uncertainty. One of 

the first developed techniques was the Kalman filter (KF) [Kalman1960], largely used for linear models. To 

allow working with non-linear models, alternative methods have been developed. One of these variants is the 

ensemble Kalman filter (EnKF), a Monte Carlo approach of the KF, performing an ensemble of model runs 

[Evensen1994]. Weerts et al. 2006 compared the EnKF with Particle filtering (another DA approach) and 

showed that EnKF was more robust and outperformed the two other analyzed filters. In the following study, 

an implementation of the EnKF with updating of state variables is explored using the SOCONT and GSM 

semi-distributed conceptual models. The performance gain is evaluated over two flood events concerning 

two different rivers located within the Upper Rhone River basin in Switzerland. 

2. MATERIAL AND METHODS 

2.1 Watersheds and data 

The analysis concerns the streamflow simulation at the outlet of the Aigle and Reckingen sub-catchments of 

the Upper Rhone River basin. In each sub-catchment, a period of high flow is analyzed over which weather 

radar data is available. The evaluated high flow periods occurred in 2012 in Reckingen and in 2015 in Aigle. 

Corresponding characteristics of the sub-catchments are given in Table 1. 

 

Station River Area [km2] 

Catchment mean 

elevation [m a.s.l.] Glaciation [%] 

Hourly peak 

flow 

[m3/s] 

Return period 

of the studied 

event [years] 

Reckingen Rhone 214 2305 11.8 154.8 36 

Aigle Grande-Eau 132 1562 0.8 60.1 10 

 

Table 1: Main characteristics of the catchments 

 

 Both rivers are equipped with a small run-of-river hydropower plant. The one in the Rhone (Reckingen 

basin) has an equipped discharge of 5.7 m3/s (yearly average discharge in 2012: 10.6 m3/s). The equipped 

discharge over the Grande-Eau was 2.5 m3/s until 2015 and is 6.5 m3/s since April 2016 (yearly average 

discharge in 2015: 4.02 m3/s). In addition, the Grande-Eau catchment receives water diverted from the Lac 

d’Arnon, a reservoir located in a nearby catchment with a capacity of 11 million m3. When the natural 

discharge in the Grande-Eau River is below the installed capacity of the two successive run-of-river 

hydropower plants, the water from the Lac d’Arnon is turbined at a third more upstream hydropower plant 

with a capacity of 1.75 m3/s. The operating data of the scheme were not available for the present study. 

 

 Precipitation data are taken from a spatial product of precipitation following the regression co-kriging 

approach presented in Foehn2018, in which radar data are combined with two networks of ground station 

data into a 1 km x 1 km gridded data with a one hour temporal resolution. Temperature data are interpolated 

from the values observed at the meteorological stations with a constant vertical lapse rate of -5.5°C/1000 m. 
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 In order to evaluate the performance of the data assimilation method, observed data of precipitation and 

temperature are used for both the assimilation and forecast simulations; i.e. no forecast data are considered in 

the present analysis. This is mainly due to the limited temporal coverage of historical weather forecast data. 

Furthermore, working with observed values can be seen as introducing less uncertainty as weather forecasts. 

Nevertheless, it must be mentioned that the Aigle and Reckingen basins are neither well covered by the 

SwissMetNet automatic monitoring network of the Swiss Federal Office of Meteorology and Climatology 

(MeteoSwisss) nor by the Swiss weather radar network, due to the complex topography of the Upper Rhone 

River basin. Therefore, the radar data are locally subject to possible underestimations. 

 

 To account for these underestimations, the spatial product of precipitation was multiplied by a 

correction factor over both basins. For Reckingen, a factor of 1.6 has been applied. This value is probably 

too low according to the difference between simulated and observed flow, but higher values were not 

investigated in this study. For the Grande-Eau, spatially varying values between 1.15 and 1.4 were 

considered. Variations in the factor are justified by the varying visibility of the weather radar data over the 

basin, with the Wildhorn peak (3250 m a.s.l.) considerably reducing the visibility over the basin of the 

closest weather radar (at Pointe de la Plaine Morte), located at only 2926 m a.s.l. 

2.2 GSM-SOCONT model 

Simulations are performed with the rainfall-runoff semi-distributed conceptual GSM-SOCONT (Glacier and 

SnowMelt – Soil CONTribution) model [Schaefli2005, GarcíaHernández2019], illustrated in Figure 1. The 

main parameters of the model are given in Table 2. 

 
Figure 1: Schematic of the SOCONT (left) and GSM (right) rainfall-runoff models ([GarcíaHernández2019]) 

 

 For the semi-distributed model, the studied catchment is divided into elevation bands with an elevation 

range not exceeding 500 m. This allows accounting for the vertical evolution of temperature. The GSM 

model is used for glacial elevation bands and the SOCONT model for non-glacial elevation bands. For both 

models, the snowmelt rate is controlled by the snowmelt coefficient. For the GSM model, when the surface 

is free of snow, glacial melt is considered based on the glacier melt coefficient and the temperature. For the 

SOCONT model, the generated discharge at the outlet of the basin is controlled by the absorption capacity of 

the soil, the release coefficient of the infiltration reservoir as well as the roughness of the surface runoff 

surface. The model has been calibrated using the same spatial products of precipitation and temperature used 

for the assimilation. 
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Parameters Units Model SOCONT 

Asn mm/d/°C Reference degree-day snowmelt coefficient 

HGR3Max m Maximum height of infiltration reservoir 

KGR3 1/s Release coefficient of infiltration reservoir 

Kr m1/3/s Strickler coefficient of surface runoff 

Variable Units Model GSM 

Asn mm/d/°C Reference degree-day snowmelt coefficient 

Agl mm/d/°C Reference degree-day glacier melt coefficient 

Ksn 1/d Release coefficient of snow melt reservoir 

Kgl 1/d Release coefficient of glacier melt reservoir 

 

Table 2: Main parameters of models SOCONT and GSM models 

2.3 Data assimilation techniques 

Two DA techniques are explored in this work to improve the values of the system state variables at the 

beginning of each forecast. The first method is based only on a volume comparison between simulated and 

observed discharges over the past 24h. This method has been used operationally for three years in the 

MINERVE system. The second method consists in an ensemble Kalman filter, where an ensemble of 

possible model trajectories is corrected by assimilating the current available discharge observation. 

 

 The objective of the data assimilation is reducing the discrepancy between the simulated state variables 

and the actual state of the system to improve the forecast performance of the model. To achieve this, the state 

variables of the model are updated using the available discharge observations. 

 

 In the SOCONT model, the state variables which initial conditions need to be updated are the water 

level in the soil reservoir (HGR3), the surface runoff water level (Hr) and the Snow water equivalent (SWE) 

which are evaluated at each spatial node of the model. Furthermore, the snow water equivalent (SWE) as 

well as the water level in the glacial melt reservoir and the snow melt reservoir from the GSM model could 

be updated but this was not explored in the study. In the following, 𝒙𝑡  indicates the system state vector of 

dimension nstate=3×nnodes, which elements are the SOCONT state variables HGR3, Hr and SWE in all 

modeled nodes. The temporal evolution of the state vector obtained with GSM-SOCONT is formally 

represented by the following dynamical model: 

𝒙𝑡+1 = f(𝒙𝑡 , 𝒖𝑡 , 𝒘𝒕) (1) 

where the function f is the set of equations linking the state of the system from time t to t+1, 𝒖𝑡
𝑖  represents  

the vector of model inputs (here, spatial maps of temperature and precipitation) and 𝒘𝑡 is the possible 

occurrence of system noise (not directly considered in this analysis). 

 

 The assimilation procedure is performed using real measurements of the system given by discharge data 

based on water level observations at the outlet of the watershed, provided by the Swiss Federal Office for the 

Environment (FOEN). Therefore, the initial discharge of the (kinematic wave) river reaches (Qini) of the 

model is also considered in the state vector. Observations are indicated with the vector 𝒚𝑡  of dimension nobs 

(here nobs=1, since the observation is the discharge at time t at a unique gauging station). The link between 

the state variables 𝒙𝑡  and the observations, 𝒚𝑡 , is provided by the following observation operator: 

𝒚𝑡 = 𝐇𝒙𝑡 + 𝒗𝒕 (2) 

where 𝐇 is a projection matrix (dimension nobs× nstate), and 𝒗𝒕 represents possible measurement errors (see 

Section 3.1.3). The matrix 𝐇 is constructed with a value of 1 in correspondence of the state variable being 

observed, and 0 elsewhere [Clark2008]. 

 

 In the following, the three assimilation procedures considered  to produce the forecasts of discharge are 

described. 
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2.3.1  Control simulation (Control) 

The reference scenario is computed by running the model (eq. 1) without any perturbation of input data (i.e., 

𝒖𝑡  corresponds to the nominal values of precipitation and temperature) and without considering the 

discharge measurements during the simulation (no data assimilation). This simulation corresponds to what is 

frequently called the open-loop scenario. 

2.3.2  Volume-based update (VBU) 

The first data assimilation approach is the volume-based update (VBU), which is based on the comparison 

between the volumes of the observed and the simulated discharges. The only updated state variable is the soil 

water content (HGR3) of the SOCONT models. The value of the corresponding HGR3 at the start of the 

VBU simulation (24 hours before the beginning of the hydrological forecast) is iteratively changed (up to ten 

iterations) so that the simulated volumes throughout the simulation are as close as possible to the observed 

ones. The implemented approach limits the saturation at the start of the VBU simulation to 75% of the 

maximum water content in the soil, in order to avoid a too much reactive result. Note that the VBU 

simulation does not take into consideration the uncertainties in the inputs, model, or observations. The 

update considers all the discharge observations collected during the 24 hours before the forecast. Similarly to 

the control simulation, VBU provides as output only one model trajectory. 

2.3.3  Ensemble Kalman filter (EnKF) 

The second data assimilation approach is an implementation of the ensemble Kalman filter (EnKF), which 

better allows the update of state variables taking into consideration model and measurements uncertainties. 

The EnKF is an adaptation of the Kalman filter in which the covariance matrix is replaced by the sample 

covariance computed from an ensemble of possible state vectors. The EnKF is based on the sequential 

repetition of two steps: the prediction step and the analysis (or assimilation) step. In the prediction step the 

different members of the ensemble are independently advanced in time by running the model (eq. 1) 

applying different random samples of  uncertain forcing terms [Srikanthan2008, Abaza2015]: 

𝒙𝑡+1
𝑖,𝑝

= f(𝒙𝑡
𝑖,𝑎, 𝒖𝑡

𝑖 , 𝒘𝒕), 𝑖 = 1, … , 𝑛𝑒𝑛𝑠 (3) 

where 𝒙𝑡+1
𝑖,𝑝

 is the ith predicted ensemble state at time t+1, 𝒙𝑡
𝑖,𝑎

 is the ith assimilated ensemble state at time 

t, 𝒖𝑡
𝑖  represents the possible occurrence of model and/or input uncertainties (here, a perturbation of 

temperature and precipitation, see Section 3.1). The index “p” indicates the prediction and the index “a” the 

analysis.  

 

 In the analysis step, the predicted state variables 𝒙𝑡+1
𝑖,𝑝

 are updated using the newly available 

observation, 𝒚𝑡+1. The nens ensemble members are combined into the nstate × nens model state matrix, that 

is: 

𝑿𝑡+1
𝑝

= (𝒙𝑡+1
1,𝑝

, 𝒙𝑡+1
2,𝑝

, … , 𝒙𝑡+1
𝑛𝑒𝑛𝑠,𝑝

) (4) 

where nstate is the number of state variables and nens is the number of ensemble members. The ensemble 

mean is given by: 

�̅�𝑡+1
𝑝

=
1

𝑛𝑒𝑛𝑠
∑ 𝒙𝑡+1

𝑖,𝑝𝑛𝑒𝑛𝑠
𝑖=1   (5) 

which is used to compute the model error for each ensemble member i: 

𝑬𝑡+1
𝑝

= (𝒙𝑡+1
1,𝑝

− �̅�𝑡+1
𝑝

, 𝒙𝑡+1
2,𝑝

−�̅�𝑡+1
𝑝

, … , 𝒙𝑡+1
𝑛𝑒𝑛𝑠,𝑝

−�̅�𝑡+1
𝑝

)  (6) 

where 𝑬𝑡+1
𝑝

 is the ensemble anomaly.  

 The ensemble model covariance matrix (nstate × nstate) can then be defined as follows: 

𝑷𝑡+1
𝑝

=
1

𝑁−1
𝑬𝑡+1

𝑝
𝑬𝑡+1

𝑝𝑇

 (7)    

 

 In order for the EnKF to maintain sufficient spread in the ensemble and prevent filter divergence 

[Burgers1998], observations are perturbed in accordance with the measurement error (eq. 2) to create a nobs 

× nens vector of observations 𝒀𝑡+1.The analysis equation is then given by the EnKF update, which is 

optimal in the case of errors with a Gaussian distribution: 

𝑿𝑡+1
𝑎 = 𝑿𝑡+1

𝑝
+ 𝐊𝑡+1(𝒀𝑡+1 − 𝐇𝑡+1𝑿𝑡+1

𝑝
) (8) 

where the matrix 𝐊𝑡+1 (nstate × nobs) is called the Kalman gain: 

𝐊𝑡+1 = 𝑷𝑡+1
𝑝

𝑯𝑡+1
𝑇 (𝐇𝑡+1𝑷𝑡+1

𝑝
𝑯𝑡+1

𝑇 + 𝐑𝑡+1)−1 (9) 
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and where 𝐑𝑡+1 is the nobs × nobs observation error covariance matrix.  

 Note that each ensemble member is updated separately. Moreover, the forecast computed after an EnKF 

update consists of an ensemble of model trajectories, from which it is possible to quantify the uncertainty 

associated to the forecast. In the EnKF implementation realized in this study, a new assimilation is 

performed every two hours. Furthermore, the constraint of maximum 75% of soil saturation used in the VBU 

is not applied in the implementation of the EnKF. This choice was motivated by the higher sophistication of 

the EnKF approach using the ensemble approach. Nevertheless, EnKF can also result in high oversaturation 

in case of large differences between simulated and observed discharges. 

3. EXPERIMENTAL SET-UP 

3.1 Uncertainties in input and output  

Model uncertainties are quantified by the ensemble Kalman filter through the empirical probabilistic 

distribution of the ensemble members. Input forcing data (precipitation and temperature in this study) are 

perturbed to provide each member a different input and thereby ensure spread in the ensemble. Members are 

initialized with a perturbation of the state variables of the model. 

3.1.1  Precipitation uncertainty 

Precipitation is perturbed following a lognormal distribution with a temporal correlation. During the 

prediction step of EnKF, the nominal value of precipitation is multiplied by a coefficient as follows: 

𝑃𝑡
𝑖 = 𝑃𝑡 × 𝑒𝑡

𝑖 (10a) 

with: 

 𝑒𝑡
𝑖 = exp (𝑧𝑡

𝑖) ~ logN(𝑚𝑒 , 𝜎𝑒) (10b) 

where 𝑃𝑡 is the measured precipitation at time t, 𝑒𝑡
𝑖 is the multiplier coefficient for the ith member at time t 

and 𝑃𝑡
𝑖 is the perturbed precipitation for the ith member at time t.  

 At time t=0, 𝑧𝑜
𝑖  is sampled from: 

𝑧0
𝑖 ~ N(0, 𝜃)  (11a) 

with a mean equal to 0 so that the median of exp(𝑧0
𝑖 ) equals 1 and the standard deviation 𝜃 fixed to 0.3 for 

Grande-Eau and 0.5 for Reckingen (0.5 corresponds to perturbation factors 𝑒𝑡
𝑖 with quantiles 5, 25, 50, 75 

and 95% of respectively 0.44, 0.71, 1.00, 1,40 and 2.18). 

 In order to ensure a temporal correlation of the perturbation for a given member at time t>0, the time 

evolution of precipitation errors is simulated as follows: 

 𝑧𝑡
𝑖 = 𝜌 z𝑡−1

𝑖 + √(1 − 𝜌2) 𝜔𝑡
𝑖   (11b) 

𝜔𝑡
𝑖  ~ N(0, 𝜃) (11c) 

𝜌 = 1 −  
∆𝑇

𝜏
  (11d) 

where 𝜔𝑡
𝑖  is the sample white noise, 𝜌 is the temporal persistence parameter, ∆𝑇 is the simulation time step 

and 𝜏 the decorrelation time step. In the present study, ∆𝑇 is one hour and 𝜏 is fixed to 24 hours (following 

Clark2008). 

In addition to the temporal correlation, the spatial correlation of the perturbation is considered by modifying 

for a given member all pixels with the same perturbation. 

3.1.2  Temperature uncertainty 

Temperature is perturbed using an additive term following a normal distribution: 

𝑇𝑡
𝑖 = 𝑇𝑡 + 𝑠𝑡

𝑖 (12a) 

where 𝑇𝑡 is the measured temperature at time t, 𝑠𝑡
𝑖 is the additive coefficient for the ith member at time t and 

𝑇𝑡
𝑖 is the perturbed temperature for the ith member at time t.  

At time t=0, the perturbation of the ith member is given by: 

𝑠0
𝑖 ~N(0, 𝜎𝑠

2)  (12b) 

where the standard deviation 𝜎𝑠 is fixed to 2°C. 

 At time t>0, a temporal correlation of the perturbation is considered following Eq. (11b) to (11d) using 

the normal distribution given in Equation 12b and a decorrelation time fixed to 12 hours. Similarly to the 

precipitation, a spatially constant correction is considered for each member. 
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3.1.3  Measurement uncertainty 

Errors in the streamflow measurements can result from both errors in the level measure and uncertainties in 

the rating curve used to transform water level into discharge data. The perturbed discharges are computed 

with an additive term as following:  

𝑦𝑡
𝑖 = 𝑦𝑡 + 𝛽𝑡

𝑖 − 𝛾 (13a) 

𝛽𝑡
𝑖~N(0, 𝜎𝛽

2)  (13b) 

𝜎𝛽 = 𝜀𝑦 × 𝑦𝑡 (13c) 

where 𝜀𝑦 is a hyper-parameter allowing to define the perturbation proportionally to the discharge values and 

𝛾 corresponds to a correction for possible external discharge contributions to the basin, like in the case of the 

Grande-Eau (1.75 m3/s from the Lac d’Arnon located outside of the basin). The 𝛾 correction is randomly 

considered by using a uniform random variable (i.e. discharge values for 50% of the members are reduced by 

the defined external discharge, 50% are not modified). 

3.1.4  Members initialization 

Before the first assimilation, initial conditions of the state variables are also perturbed. The level in the 

infiltration reservoir, the level of surface runoff and the snow water equivalent height of the SOCONT 

models are perturbed using a normal distribution with mean 0 and a standard deviation corresponding to 40% 

of the original state variable value. 

 

 The original initial values are computed with a one year warm-up simulation using the same 

precipitation and temperature data as the one used for the data assimilation. 

3.2 Performance evaluation  

Two precipitation events are analyzed and the VBU and EnKF are used to assimilate streamflow 

measurements every 2 hours. After each assimilation, a new streamflow forecast of 3 days is produced using 

observed precipitation and temperature. The performances of the control scenario, VBU and EnKF are 

evaluated by computing the root mean squared error (RMSE) between the forecasted and measured 

streamflow values at different lead times L (each hour) during the forecast as followed: 

RMSE𝐿 = √∑ {𝑄𝐿,𝑗
𝑓

−𝑄𝐿,𝑗
𝑜𝑏𝑠}

2
𝑛
𝑗=1

𝑛
 (12) 

where n is the number of forecasts produced during the single precipitation event.  

3.3 Code implementation  

 The methodology has been implemented in the R language and environment (R Core Team_2018), in 

particular with the packages parallel for parallel computation (R Core Team 2018), ggplot2 for the plots 

(Wickham 2016) and httr for the data acquisition (Wickham 2018). 

4. RESULTS AND DISCUSSION 

Simulations have been run for the two events presented in Table 1. 

 

 Figure 2 shows the forecasted flow about 24 hours before the peak flow for the high flow event at 

station Reckingen (Rhone River). For the EnKF approach, lines corresponding to all members as well as the 

median (red) and the mean (brown) are shown. Over the assimilation period, the difference between the 

VBU (green line) and the Control (blue line) are well visible, with the VBU line being closer to the 

observations. The red line, existing only over the two hours preceding the assimilation time (corresponding 

to the prediction phase of the members) is close to the observed discharge value of the assimilation time 

(vertical dashed line). The daily variation due to snow and ice melt is well visible in the observed discharge.  

 

 The simulated discharge, in particular for the Control simulation, is well below the observed discharge, 

even though the precipitation has been multiplied by 1.6. This confirms the need of modifying the 
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precipitation input to well reproduce the event and highlights the importance of representative input data to 

the model.  

 

 
Figure 2: Forecasted discharges for the three different approaches at the Reckingen station on the Rhone River. The 

dashed line corresponds to 2012-07-01T10+01:00.  

 

 The RMSE values obtained during the forecast for the event are presented in Figure 3. The EnKF 

provides the best performance, followed by the VBU approach. The difference between the two DA 

approaches is not high, except over the few first forecast hours, where the EnKF results in a lower error.  

  

  
Figure 3: RMSE values obtained for the three approaches for the high flow event at the Reckingen station on the Rhone 

River. The n value indicates the number of runs considered in the computation of the RMSE value of each temporal 

horizon. 

 

 It must be mentioned that the considerable gain of the two data assimilation approaches (VBU and 

EnKF) is here partially an artefact. In fact, the difference between simulated and observed discharges 

probably rather comes, at least partially, from an underestimation in the snow and ice melt, variables which 

are currently not updated in the presented system. To compensate this underestimation, the VBU and EnKF 

approaches increase the soil water content of the non-glacial part of the basin to increase the base flow. This 

results during the event in a much higher peak flow as compared to the Control simulation. The hypothesis of 

an overcompensation of the soil reservoir is also supported by the very rapid hydrological answer of the 

system at the begging of the event, suggesting a highly saturated soil. This analysis supports the need to 

improve the implemented EnKF approach to update also the initial level of glacial and ice melt reservoirs. 
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Furthermore, regarding the difference between EnKF and VBU, it probably results from the constraint used 

in VBU to limit the soil water storage to 75% of its maximum capacity, constraint not applied to EnKF. 

 

 Over the second studied high flow event, concerning the Grande-Eau basin, results are quite different. 

During the event, both the VBU and the EnKF approaches perform similar to the Control simulation (Figure 

4). However, when looking at the performance over the entire event (i.e. including the forecasts generated 

before the beginning of the event), the Control simulation performs best (Figure 5).  

 

 
Figure 4: Forecasted discharges for the three different approaches at the Aigle station on the Grande-Eau River. The 

dashed line corresponds to 2015-05-02T06+01:00. 

 

 

 
Figure 5: RMSE values obtained for the three approaches for the high flow event at the Aigle station on the Grande-

Eau River. The n value indicates the number of runs considered in the computation of the RMSE value of each temporal 

horizon. 

 

 The better performance of the Control simulation results from the fact that when applying the data 

assimilation methods on the base flow, both methods fail in well forecasting the observed discharge by 

highly overestimating the discharge (Figure 6). This low performance of both DA approaches is here mainly 

linked to the external water (from the Lac d’Arnon) turbined in the upstream part of the basin. Exclusively 

operated during low flows, the relative impact on the base flow is considerable. Over the studied event, the 

external input results in an increase of the observed discharge from 6.2 m3/s to 9.8 m3/s, which represents an 

artificial increase of the natural discharge of 58%.  
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Figure 6: Forecasted discharges for the three different approaches at the Aigle station on the Grande-Eau River. The 

dashed line corresponds to 2015-04-30T00+01:00. 

 

 For the VBU approach, the external water discharge constantly causes an increase in the soil water 

content to try to reproduce the observed discharge. The longer the operation of the turbine over the last 24 

hours, the more VBU will tend to increase the soil saturation. For the EnKF, the behavior slightly differs, 

mostly due to the consideration of the external input in the approach, by modifying the observed discharges 

with the turbine capacity for 50% of the members. When the observed discharge includes external turbined 

water, an overestimation is also observed in the forecasted discharge, even though it tends to be less extreme 

than the one of VBU (see Figure 6). On the contrary, when the turbine is not operating (i.e. the observed 

discharge corresponds to the natural discharge), the scheme tends to underestimate the observed discharge in 

the forecast, due to the discharge correction. 

 

 Results show that the implemented solution with a modification of the observed discharge for 50% of 

the members is not efficient. This issue needs further investigation to come to a robust system. Ideally, data 

from the turbine injecting the external water would be integrated directly in the model at the location of the 

hydropower plant to reduce this high source of uncertainty. Thereby, the performance would certainly be 

higher. In fact, tests have demonstrated that the EnKF approach can perform very well when applied over the 

hours preceding the studied event when the observed discharge corresponds to the natural discharge. 

 

 In addition, it must be noted that whereas the capacity of the turbine injecting the external water is fixed 

to 1.75 m3/s, the observed discharge variations (increase and decrease) before the studied event vary between 

3 and 4 m3/s for a base flow of about 6 m3/s. Interestingly, an analysis of historical discharge data has 

revealed that for base flow of 2 m3/s, the variations rather tend to be in the range of 1 m3/s for the same 

turbine operation. This will need to be better analyzed and will have to be considered for future development 

of the above presented EnKF methodology.   

 

 Furthermore, correct base flow estimates are important to achieve good results. If the model is not able 

to well reproduce the base flow, the correction of the EnKF might result in important over- or 

underestimation of the high flow events as a result of an inadequate correction of the soil water content. 

Therefore, implementing the presented methodology should only be considered on basins with a robust 

calibration. 
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5. CONCLUSIONS 

Two data assimilation methods are explored in this study to improve the initial conditions of the model state 

variables with the objective of improving the quality of hydrological forecasts. They are compared with a 

reference scenario working without data assimilation (Control). The first method updates the soil saturation 

based on a volume-based update (VBU) over the 24 hours preceding the forecast. The second method is an 

implementation of the ensemble Kalman filter (EnKF). The semi-distributed conceptual hydrological model 

GSM-SOCONT is used for the simulations. 

 

 The methods are applied to two high flow events over two different catchments of the Upper Rhone 

River basin in Switzerland. Spatially interpolated precipitation data in combination with temperature data 

observed at stations are used both for the assimilation and forecast periods. The performance is evaluated 

with the Root Mean Square Error at hourly forecasting horizon up to 72 hours. 

 

 The results differ over the two basins. Over one basin, the two data assimilation methods provide better 

results than the Control, with EnKF outperforming the VBU approach. However, since the methodology is 

applied to a glacial basin where the glacial and snow melt reservoirs are not updated in the assimilation, the 

better performance might result from an overcompensation of the soil water content in the non-glacial part of 

the basin. Over the second basin, the results are completely different. The best performance is obtained with 

the Control simulation, thanks to a good reproduction of the observed discharge by the simulation without 

any correction. The low performance of the data assimilation approaches is explained by the impact of the 

water injection through a turbine from a reservoir external to the basin, considerably impacting the observed 

base flow and affecting the data assimilation. The effective turbine operation not being available to the 

system, the data assimilation techniques fail to adequately forecast the flow during the precipitation event. 
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