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Creative study ... finds its largest applications in those subjects in which, while much is known,

more remains to be known. Such are the fields which we, as naturalists, cultivate; and we are

gathered for the purpose of developing improved methods lying largely in the creative phase of

study, though not wholly so.

— T.C. Chamberlin, 1890, Science
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Abstract

Among the many challenges of Alpine flood prediction is describing complex, meteo-hydrological

processes in a simplified, robust manner that can be easily integrated into operational fore-

casting. In this dissertation, improved methods to characterize these processes are developed

and integrated into the hydrological modeling component of an operational flood forecasting

system used in the Swiss Alps. Detailed studies are conducted to improve hydrological model

inputs, processes and outputs. Improvements, detailed in four chapters of this thesis, address

the overarching goal of this work – the reduction of flood forecasting uncertainty.

The accuracy of flood predictions in Alpine areas is contingent upon adequate interpolation

of meteorological forcings, which has significant impacts on discharge volumes and flood

peaks. This thesis demonstrates an improvement in the interpolation of temperature and

precipitation inputs using a robust variogram which considers anisotropy and using a geosta-

tistical interpolation method to distribute inputs in space and time. Results show that using

elevation as the external drift factor better describes orographically-induced precipitation and

temperature gradients. Also, the consideration of anisotropy is integral in detailing spatial

patterns of precipitation induced by storm advection.

Hydrological flood forecasting in mountainous areas also requires accurate partitioning be-

tween rain and snowfall to properly estimate the extent of runoff contributing areas. Partition-

ing is improved in this work by using a new method to integrate Limited Area Model output.

Unlike standard hydrological procedures in inferring snowfall limit estimates based on dry,

ground temperature measurements, Limited Area Model output considers the vertical, humid,

atmospheric structure in its snowfall limit calculations. In effect, this method provides good

estimates of runoff contributing areas in the spring as evidenced by validation on discharge

measurements and satellite images of snow coverage.

Accurately describing snowmelt processes on a sub-daily scale is also of critical importance

in Alpine flood forecasting. However, the complex topography of the study region has lim-

ited observations available for validation. This thesis presents the development of a new

physically-based snowmelt method applicable to regions with limited data. This method uses

only daily minimum and maximum temperatures to mimic the effects of radiation. A compar-

ative analysis of snowmelt methods is validated with snow lysimeter data and with a unique,

distributed meteorological dataset collected by a wireless weather station network. Results
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Chapter 0. Abstract

demonstrate that the new method is competitive with more complex snowmelt methods as

shown by accurately reproducing diurnal snowmelt cycles.

Conveying limits of certainty on flood prediction outputs to users is critical because of epis-

temic and aleatory errors inherent to environmental modeling. Due to the presence of these

errors, the GLUE methodology and multi-criteria performance ideas have been adapted with

a fit-for-purpose uncertainty estimation technique in the final part of this thesis. With this

method, hydrological model parameters are constrained based on hydrograph behavior, with

a particular focus on flood peak response. A key component of the technique is a visualization

tool which shows acceptable ensembles of discharge with respect to individual and combined

criteria. By integrating the aforementioned input and process improvements into the hydro-

logical model, calibration achieves model outputs that capture observed river discharge. Also,

the uncertainty associated with hydrological modeling output error is reduced.

Findings of this thesis are applicable to operational flood forecasting in general and have

proven utility in improving hydrological model predictions in mountainous regions. Due to

the novelty of the developments in terms of new methods or the use of tools and data sources

previously unexploited in flood forecasting, further testing of the improvements is recom-

mended. Future research in quantifying the chain of uncertainty produced by combining

probabilistic forecast inputs with the hydrological output ensembles is also critical when the

improved flood forecasting model becomes fully operational.

Keywords: Flood modeling, geostatistics, Limited Area Models, snowfall limit, snowmelt,

uncertainty, GLUE
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Résumé

Parmi les nombreux défis de la prévision des inondations alpines se trouve la description des

processus météo-hydrologiques complexes d’une manière simplifiée et robuste pouvant être

facilement intégrée dans la prévision opérationnelle. Dans cette thèse, des méthodes amé-

liorées pour caractériser ces processus sont mises au point et intégrées dans la composante

hydrologique d’un système de prévision opérationnel des crues, utilisé dans les Alpes suisses.

Des études détaillées sont menées pour améliorer à la fois le modèle hydrologique, les intrants,

les processus et les résultats. Les améliorations détaillées au cours des quatre chapitres de

cette thèse adressent l’objectif primordial de ce travail - la réduction de l’incertitude des

prévisions de crues.

La précision des prédictions des inondations dans les régions alpines est contingente à une

interpolation adéquate des forçages météorologiques, ce qui a des répercussions importantes

sur les volumes de débits et des pics des crues. Cette thèse démontre une amélioration de

l’interpolation des intrants de la température et de précipitation en utilisant un variogramme

robuste qui prend en compte l’anisotropie ainsi qu’une méthode d’interpolation géostatis-

tique permettant la distribution des intrants dans l’espace et dans le temps. Les résultats

montrent que l’utilisation de l’élévation comme facteur de dérive externe décrit le mieux

la précipitation induite orographiquement ainsi que les gradients de température. Aussi la

prise en compte de l’anisotropie est cruciale dans la description de la répartition spatiale des

précipitations induite par l’advection des orages.

La prévision des crues hydrologiques dans les régions montagneuses exige également un

partitionnement précis entre pluie et neige, pour estimer correctement l’étendue des zones

qui contribuent au ruissellement. Le partitionnement est amélioré dans ce travail en utilisant

une nouvelle méthode pour intégrer les sorties de ’Limited Area Models’. Contrairement aux

procédures hydrologiques standard qui estiment la limite des chutes de neige en fonction

des mesures de température sèches au sol, les sorties de ’Limited Area Models’ considère la

structure de l’atmosphère verticale et humide dans ses calculs des limites pluie-neige. Cette

méthode permet donc une bonne estimation des zones contribuant au ruissellement de prin-

temps, ceci étant validé par les mesures de débit ainsi que des images satellite de la couverture
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Chapter 0. Abstract

de neige.

Décrire précisément les processus de fonte des neiges à l’échelle horaire est également d’une

importance cruciale dans la prévision des crues alpines. Cependant, la topographie complexe

de la région d’étude limite les observations disponibles pour la validation. Cette thèse présente

le développement d’une nouvelle méthode à base physique de la fonte des neiges, applicable

aux régions ayant des données limitées. Cette méthode utilise seulement les températures

journalières minimales et maximales pour mimer les effets des rayonnements solaires. Une

analyse comparative des méthodes de fonte des neiges est validée par des données lysimé-

triques de neige avec une agrégation de données météorologiques distribuées, collectées

par un réseau de stations météorologiques sans fil. Les résultats démontrent que la nouvelle

méthode est compétitive avec des méthodes de fonte de neiges plus complexes ; cette méthode

permet en effet une reproduction fidèle des mesures de débits réels ainsi que des images

satellite de couverture neigeuse.

Il est également impératif de pouvoir communiquer aux utilisateurs les incertitudes sur les

sorties de prévision des crues dues aux erreurs épistémiques et aléatoires inhérentes à la

modélisation de l’environnement. En raison de la présence de ces erreurs, la méthodologie

GLUE ainsi que d’autres idées de performance multicritères sont adaptées à une technique

d’estimation de l’incertitude ’fit-for-purpose’ dans la dernière partie de cette thèse. Dans cette

méthode, les paramètres de modèles hydrologiques sont limités en fonction du comportement

de l’hydrogramme, avec un accent particulier sur la réponse aux pics de crue. Un élément clé

de la technique est un outil de visualisation qui montre les ensembles acceptables de débit

vis-à-vis des critères individuels et combinés. En intégrant les intrants améliorées et l’amé-

lioration des processus ci-dessus dans le modèle hydrologique, les résultats indiquent que le

calage donne des résultats en accord avec le débit fluvial observé, et l’incertitude associée aux

erreurs de sortie de la modélisation hydrologique est réduite.

Les résultats de cette thèse sont applicables à la prévision des crues opérationnelle en général

et ont fait leurs preuves dans l’amélioration des prévisions des modèles hydrologiques de

régions montagneuses. En raison de la nouveauté des développements en terme de nouvelles

méthodes ou de l’utilisation d’outils et de sources de données inexploitées jusqu’alors dans la

prévision des crues, des tests supplémentaires des améliorations sont recommandés. Lorsque

le modèle amélioré de prévision des crues deviendra opérationnel, il sera également crucial

d’effectuer des travaux supplémentaires dans le domaine de la quantification de la chaîne

d’incertitude produite par la combinaison des intrants de prévisions probabilistes avec des

ensembles de sorties hydrologiques.

Mots-clés : Simulations des crues, geostatistiques, limite pluie-neige, fonte des neiges, in-

certitude, GLUE
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Chapter 1
Introduction

Flood prediction in Alpine regions is a challenging task due to complex, physical interactions,

including spatially and temporally variable meteorological processes as well as varied runoff

contributions from rain and snowmelt. Aggregating such processes into a forecasting model

brings uncertainties to all components of the flood forecasting chain (e.g., inputs, model

structure). The nonlinear nature of models and the correlation of errors makes uncertainty

quantification and disaggregation a difficult task in hydrology (Gupta et al., 2005; Vrugt et al.,

2009). Despite much research, proper means of characterizing mountain floods is still poorly

understood (de Jong et al., 2005), and as a result, significant, comprehensive efforts have been

made to quantify uncertainties of flood predictions in Alpine areas (Zappa et al., 2008). This

dissertation aims to improve an operational flood forecasting model in the Upper Rhone River

basin located in the Swiss Alps by accurately characterizing hydrological processes and by asso-

ciating an uncertainty with flood forecasting model outputs. The model was originally created

to simulate preventative hydropower operations for flood mitigation measures (e.g., reservoir

releases, gate and turbine operations). This research intends to improve the hydrology com-

ponent of the existing model so that more confidence is instilled in the rainfall-melt-runoff

transformations which dictate the extent of hydropower management necessary. All research

endeavors herein have the particular goal of being easily integrated into the operational flood

forecasting model whose uncertainty estimates must be easily understood by end-users.

1.1 Complexities in characterizing mountain floods

1.1.1 Unique meteo-hydrological characteristics

Mountain floods can be attributed to a unique set of physical, dynamic processes that lead to

spatially heterogeneous snow accumulation and runoff-generation. One of the most influen-

tial processes is orography whose effects are characterized by a rapid decrease of atmospheric
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Chapter 1. Introduction

moisture with altitude combined with a rain shadow effect on the leeside of mountains (Fig-

ure 1.1). These effects are produced by the forced mechanical lifting of air over mountains,

resulting in cooling of the air column, condensation and increasing precipitation with altitude

while progressive warming and drying occurs on leeward sides. Such processes must be

considered in flood modeling because the effective terrain elevation combined with synoptic

scale meteorological processes have been proven to be highly correlated with the high pre-

cipitation intensities associated with mountain floods (Roe, 2005). Weather patterns are also

highly influential during flood periods and in Alpine contexts (Sevruk, 1997). The direction

of synoptic-scale flow often dictates patterns of precipitation accumulation (Molini et al.,

2011). Similarly, strong wind effects result in high spatial variability of snow accumulation

(Weingartner et al., 2003; Loffler and Rossler, 2005).

Figure 1.1: The orographic effect demonstrating the increase of precipitation and decrease of
temperature with elevation on windward sides of mountains and the analog effect on leeward
sides (Source: Thomson Higher Education)

There are also various hydrological processes which contribute to flood producing mecha-

nisms in Alpine areas. Merz and Bloschl (2003) proposed a framework for identifying the

causative mechanisms of floods. Their research demonstrated that long-rain or intense

short-rain periods, snow-on-rain events and snowmelt processes are the most influential

mechanisms affecting runoff response (in this order of influence). In the particular case of

mountain watersheds, analysis of flood discharge indicates that rising and falling limbs of

stormflow hydrographs are steep (de Jong et al., 2005). This behavior is related to the fact that

surface runoff represents a large portion of the total runoff and that baseflow recession is rapid

in mountain areas. On the order of hours to days, depending on the size of the basin, surface

and near-surface paths can become significant contributors to flood volumes. In particular,

the size of flood peaks is determined by the combination of antecedent baseflow and surface

stormflow conditions (Dunne, 1978).

An ever-present challenge in mountain watersheds is how to accurately describe the partition-
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ing between surface and subsurface runoff. Key factors defining flow partitioning include the

infiltration capacity of the upper soil layers and the soil hydraulic properties (de Jong et al.,

2005). For instance, if rainfall intensity exceeds infiltration capacity during a storm, Hortonian-

overland flow will develop. In mountain areas, field experiments have demonstrated that

flood-producing rainfall intensities of 10 mm h−1 or more on soils with low saturated hydraulic

conductivity (e.g., 10−6 mm h−1) leads to Hortonian-overland flow (Dunne, 1978). A partic-

ularly challenging hillslope process to model is return flow, which is created when shallow

subsurface paths emerge from the soil surface and return to channels as overland flow, thereby

contributing to storm hydrographs as saturation overland flow. Furthermore, the sources of

saturated contributing area over which return flow and direct precipitation are generated vary

seasonally and throughout a storm. Fluctuations of saturated areas are related to topography,

soils, antecedent moisture and rainfall characteristics (Beven, 2004).

Moreover, snow cover in Alpine regions produces particular hydrologic situations; snow

pack densities evolve due to freezing (re-freezing) and thawing or melting mechanisms. The

dynamics of glacier retreat and re-freezing greatly impacts the accumulation of snow on

glaciers and the melting of snow and ice (Huss, 2011). Antecedent snowmelt can saturate soils

to the extent that overland flow is produced during rain events (Merz and Bloschl, 2003). In

addition, the input of latent heat into the snowpack during rainfall events causes rain-on-snow

events to exacerbate flood damage (Sui and Koehler, 2001).

1.1.2 Hydraulic influences

Hydraulic structures in Alpine regions also add to the complexity of modeling hydrologic

processes for flood prediction. Reservoir storage and turbine schemes for hydropower man-

agement dramatically re-distribute runoff. Particular to Alpine regions in Europe, runoff

regimes are dominated by water capture for hydropower operations. For example, in the

Swiss Alps, water is commonly captured at the headwaters, capitalizing on snow and ice

melt and placed in storage lakes. Discharge from the lakes is passed through hydropower

turbines where it is either returned to lower parts of the rivers or pumped back up to feed

hydropower plants. Levels of the storage lakes depend on the economic incentive to store

or produce energy; lakes serve as a means to shift electricity production from times of high

water availability to times of peak electricity demand. In the Upper Rhone River basin (the

region this research concerns), which generates 50% of Swiss electricity, 38% of the rivers are

affected by hydropower (Weingartner and Pearson, 1999; OFEN, 2012). To add to the challenge

of modeling runoff flows, hydropower discharge data is typically daily (thereby not evident

for flood modeling on hourly timescales) and day to day reservoir management is generally

unknown due to confidential hydropower operations by private companies (Hingray et al.,

2010).
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1.1.3 Climate change impacts on mountain floods

In the context of current and future climate change, flood risks in mountainous areas are

increasing due to overall Alpine temperature increases. Large floods in mountain basins are

likely to become more frequent with climate change (Allamano et al., 2009). Analysis of climate

change scenarios indicates that snowmelt periods will begin earlier in the spring for Alpine

regions, leading to a shift of hydrological regimes and maximum monthly discharges (Messerli

et al., 2004; Horton et al., 2006). Climate change has also been proven to result in complex

non-linear changes in temperature gradients; in the European Alps, minimum and mean

maximum temperatures have shown variable increases (in some cases have remained con-

stant) depending on the altitude range considered (Pepin, 2000). Such changes in temperature

gradients highly impact flood runoff responses (Tobin et al., 2011). Furthermore, variations in

cloudiness and atmospheric transmission are altering quantities of incoming solar radiation.

Snowmelt models which commonly link temperature to incoming radiation to produce the

equivalent precipitation component of hydrological models are impacted as a result (Huss

et al., 2008). Moreover, the resulting changes in radiation are not aligned with changes in air

temperature caused by climate change indicating that snowmelt models calibrated in the past

must be scrutinized in order to ensure that they still provide valid melt calibrations in today’s

models.

1.2 Challenges for Alpine flood forecasting models

Integrating the aforementioned meteo-hydrological physical processes and hydraulic influ-

ences into a flood forecasting model which is robust to changes from one flood event to the

next is a challenge for hydrological modelers (Beven, 2009), particularly in Alpine contexts. The

flood forecasting chain (as depicted in Figure 1.2) must aggregate and estimate these modeling

difficulties along each step of the forecasting cascade (Pappenberger et al., 2005). The cascade

includes the following components: Input to flood forecasting models comes from numerical

weather prediction (NWP) models or measured data. Post treatment is generally required

for inputs from NWP models in order to remove biases and use data assimilation for model

correction. Data assimilation is also used with input measurements to correct hydrograph

predictions (Alfieri et al., 2011). Input is fed into a hydrologic/hydraulic model which provides

river discharge predictions that are compared against measured responses. If the simulated

responses differ from the measured, parameters are calibrated to provide results similar to

those measured. At times, however, hydrologic/hydraulic models can be ill-defined so that it

becomes necessary to re-identify more appropriate model processes. The following discussion

details the inherent difficulties in defining and calibrating each part of this cascade, with a

particular emphasis on the complexities of Alpine flood forecasting.
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Figure 1.2: The flood forecasting chain

1.2.1 Numerical Weather Prediction forecasts as inputs

Flood forecasting models are typically fed by down-scaled Global Climate Models via Nu-

merical Weather Prediction (NWP) which provide forecasts as deterministic or probabilistic

inputs to hydrological models. The input uncertainty associated with such meteorologi-

cal forecasts typical represents the largest source of uncertainty in the prediction of floods

due to the non-linear nature of the atmosphere (Cloke and Pappenberger, 2009). Weather

forecasts are limited by not only the numerical representation of the atmosphere’s physical

processes, but by the resolution of the simulated atmospheric dynamics and the sensitivity

of the solutions to the initial conditions and sub-grid parameterization (Buizza et al., 1999).

One of the biggest challenges in improving forecasts remains to increase the resolution of

the representation of physical processes. Limited Area Models have been generated from

NWP models to characterize more fine scale dynamics. The resolution of Limited Area Model

grid cells generally ranges between 1-10 km2. In spite of advances in resolving finer physical

phenomena, the time/space scale of the hydrological model is typically 100 to 1,000 times

finer than that of a Limited Area Model forecast model (Cloke and Pappenberger, 2009). As

a result, disaggregation of meteorological processes is required for input into hydrological

modeling. However, associated uncertainties in downscaling must be propagated throughout

the flood forecasting model. Furthermore, generally Limited Area Models require some kind of

initial bias correction (i.e., post-treatment of inputs as in Figure 1.2) through data assimilation

in order to correspond with statistics of related observations. However, bias correction has

not systematically provided an increase in forecast skill (Hagedorn et al., 2007). Uncertainties

also arise due to the rarity of flood events which makes a limited dataset difficult to condition

or train forecasting models (Pappenberger et al., 2011). Floods are also seasonal so relevant

data becomes even more limited for determining relationships between rainfall and flood

5



Chapter 1. Introduction

discharge (a spring flood can not necessarily be characterized in the same manner as an

autumn flood) Merz and Bloschl (2003).

In the context of this thesis, the Limited Area Models utilized in flood forecasting for Switzer-

land are COnsortium for small Scale MOdeling (COSMO) products. Such products are geared

to improving early and medium-range predictability for extreme and localized weather events

taking into account orographic effects. A probabilistic meteorological-hydrological ensemble

prediction chain has shown much success in providing guidance for extreme flood forecasting

of 72 to 120 hours for the August 2005 flood in the Upper Rhine catchment in Switzerland

(Juan et al., 2008). Details of the COSMO products are provided in Chapter 2 of this thesis.

1.2.2 Hydrological modeling inputs

For calibration and data assimilation purposes, measured data are used to update hydrological

models. A primary challenge in mountainous regions is the lack of measurement stations,

particularly above 2000 m (Frei and Schär, 1998). Because gauged networks are relatively

sparse at high altitudes, it is necessary to interpolate (extrapolate) between (from) meteoro-

logical stations to extend the limited measurement data to vast unmeasured, spatial areas.

Interpolation is generally implemented at a resolution where physical hydrological processes

are valid and not overly generalized. The difficulty of interpolation is how to maintain spatial

and temporal correlations with minimum error while considering the influential effects of

altitude and orography (Guan et al., 2005).

Proper precipitation interpolation is quite important because the areal volumes induced by

rainfall provide the runoff and infiltration in hydrological models (where infiltration impacts

antecedent soil conditions). Smith et al. (2004) and Woods and Sivapalan (1999) have demon-

strated that the distance-averaged rainfall excess needs to be considered in understanding

the response of different catchments. The variability of the rainfall pattern can exert a strong

influence on the timing of the hydrograph peak at a downstream gauging station (Gupta et al.,

2005). However, the sensitivity of the flow hydrograph to the uncertainty in rainfall decreases

with catchment scale (Rodriguez-Iturbe and Mejia, 1998). Gabellini et al. (2007) showed

significant changes (up to 25 percent in peak discharge) in the hydrologic response for storm

events with different space-time structures depending on catchment size. The variability of

the precipitation inputs is also generally dampened in larger catchments due to smoothing

effects of the modeled catchment (Beven and Wood, 1993). In these cases, it is only vital to

have accurate information on catchment average precipitation (Obled et al., 1994). Mesoscale

studies, in particular, by Nicótina et al. (2008) indicated that the spatial variability of rainfall

does not have a significant effect on catchment aggregated flood response if the spatial scales

that characterize precipitation processes are comparable to the average dimension of the

hydrologic model units (i.e., subcatchments). In such a case, it is most critical to correctly

estimate rainfall volumes at each time interval. Overall, the most difficult aspect of interpolat-

ing precipitation is the fact that rainfall is highly non-linear with an assymetric probability
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distribution (Blöschl and Montanari, 2010), making it difficult to make rainfall predictions

temporally and spatially.

The interpolation of input temperature is also particularly critical in Alpine areas. To produce

correct snowmelt volumes it is necessary to accurately estimate non-stationary temperature

distributions with elevation. According to Garen et al., (2005), in order to accurately reproduce

the processes of snow and ice accumulation and ablation, temperature spatial interpolation

with reference to altitude is the driving force which enables a good representation of real

runoff conditions. Temperature interpolation also has an impact on long-term simulations

because what is stored in the snowpack will be eventually released in the melting season. In

the case of the study region, dynamic changes in temperature have been attributed to large

over and underestimations of discharge for floods in Switzerland (Hingray et al., 2010).

For Alpine contexts, the reduction, or lapse of air temperature with increasing altitude, i.e.,

lapse rate, is highly influential in snowmelt and hydrological models. Lapse rates are complex

in that they are influenced by moisture level, cloudiness/solar radiation and wind speed (Pepin

et al., 1999). A shallower lapse rate is typically associated with colder, moister atmospheric

conditions whereas steeper lapse rates are generally associated with warmer, drier conditions

that occur with increased solar radiation. On a seasonal scale, lapse rates are steeper in the

summer months and shallower in winter months whereas on a daily scale lapse rates typically

change diurnally (Blandford et al., 2008). Most hydrological and snow melt models currently

use the constant, dry adiabatic lapse rate in an observed standard atmospheric profile, -0.0065
◦C m−1 or lapse rates determined by annual mean temperatures (Braithwaite, 2008; Brubaker

et al., 1996; Hebeler and Purves, 2008; Konz et al., 2007; Koboltschnig et al., 2009). However,

because the meteorological processes in complex terrain change rapidly on a sub-daily scale,

constant lapse rates have been indicated to be highly inappropriate in mountainous regions

(Rolland, 2003; Blandford et al., 2008; Minder et al., 2010).

Another complexity for Alpine hydrological models is the partitioning between rain and snow

(Tobin et al., 2012) (Figure 1.3). The so-called snowfall limit dictates non-stationary snow cover;

it is integral in hydrological models in detailing the source areas receiving rain which directly

contribute to runoff and infiltration. However, the spatial variability of snow cover can be

very high due to the orientation of winds, different climatic situations and continental versus

oceanic forcings (Messerli et al., 2004). Moreover, the observed precipitation type defining the

snow limit is influenced by complex, physical processes which are practically impossible to

integrate into a simplified hydrological model used for flood forecasting; a comprehensive

account of precipitation type would include, among other factors, the incorporation of latent

heat (Unterstrasser and Zaengl, 2006), relative humidity (Matsuo and Sasyo, 1981), and thermal

and moisture distributions (Bourgouin, 2000).
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Figure 1.3: Snowfall limit at the outlet of the Upper Rhone River basin into Lake Geneva

1.2.3 Snow processes

In mountain contexts, snow melt estimations are a great source of uncertainty for flood

forecasting (Heilig et al., 2010). The rate of snow cover depletion highly impacts snow melt

runoff at the catchment-scale (Anderton et al., 2002). One of the most common and simplest

means of estimating snow or glacier melt, particularly in data constrained mountainous areas,

is to use temperature index methods which define melt rates on the basis of a well-known

relationship between melt and air temperature (Finsterwalder and Schunk, 1887; WMO, 1986).

In contrast, more comprehensive, full energy balance methods define melt on the basis of

local turbulent fluxes of sensible and latent heat (Braithwaite, 1995) and warm-air advection

(Sicart et al., 2008). These methods are based upon the most important variables affecting

melt including incoming shortwave radiation, reflected shortwave radiation, air temperature,

vapor pressure and wind speed (Anderson, 1973; Rohrer and Braun, 1994; Pellicciotti et al.,

2005; Lehning et al., 2006).

It is not trivial to model energy and mass balance processes related to snowmelt because

they are coupled with evolving heterogenous states of snow-covered and non-snow covered

surfaces (Pomeroy et al., 2003). In fact, snowmelt energy balances with flat plane conceptions

require corrections because varying slopes and aspects cause notable differences in net ra-

diation and surface temperatures (e.g., a 30% reduction in turbulent and conductive fluxes

was noted when changing from a flat to a 45◦ slope) (Pomeroy et al., 2003). Furthermore, as

snow progressively melts, net radiation and melt energetics are magnified due to exposure

of vegetation and bare ground (Pomeroy et al., 2003). Practically, due to these complexities

and with limited measurements available in Alpine regions, it is difficult to close the energy
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balance on a catchment-scale. Also, in the context of real-time flood forecasting, limited

point measurements available preclude generalized model calibration and validation for the

quantifications of snow covered area and snow water equivalent (Jonas et al., 2009; Dozier,

2011).

1.3 Uncertainty of flood forecasting models

Due to the complexities in modeling complex, Alpine physical processes along the flood

forecasting chain, sources of uncertainty can be assumed to stem from an interaction of input,

model structure, parameter choice and operational use errors. Understanding all of these

model uncertainties is a prerequisite for making decisions based on flood forecast outputs

(Cloke and Pappenberger, 2009). In mountain areas, uncertainties are typically higher due to

sparse measurements at higher elevations and heterogeneities in meteo-hydrological patterns

(Viviroli et al., 2007). For general contexts, input forcing error has been shown to have a strong

effect on hydrological model parameter values and output uncertainty and has been indicated

to be one of the major sources of uncertainty in rainfall-runoff modeling (Ajami et al., 2007).

Parameter uncertainty is also significant due to a lack of comprehensive databases and the

inability to measure certain parameters in the field (Fleming et al., 2010; Montanari, 2011).

Model structure uncertainty can be common due to a misrepresentation of complex, flow

dynamics in simplified, rainfall-runoff models (Hostache et al., 2010; Montanari, 2011). In

fact, due to the impact of model uncertainty, recent research advances have explored using

multiple model structures to represent hydrological processes (Hoeting et al., 1999).

Formal uncertainty approaches have been developed to use statistical methods to quantify

the various sources of uncertainty in hydrological modeling (Vrugt et al., 2009). It is generally

assumed that individual errors are additive and the resulting total error has a Gaussian dis-

tribution, zero bias and constant variance (Beven, 2009). Note that if this is not the case, it

is still possible to transform non-Gaussian distributions to the equivalent density value of a

Gaussian distribution using the meta-Gaussian approach (Montanari and Brath, 2004) or to

use autoregressive models to reformulate the errors (Schaefli et al., 2007; Yang et al., 2007).

Effectively, formal approaches have enabled the improvement of individual hydrological

modeling components in specific cases (Krzysztofowicz, 1999; Kavetski et al., 2006).

However, practically, with most hydrological models, it is difficult to disentangle the various

sources of error because one type of error can compensate for another during the calibration

process (Ajami et al., 2007). As a result, it is believed that a satisfactory approach to separate the

various sources of hydrological modeling error has yet to be proposed (Gupta et al., 2005), and,

in some cases, entangling error sources is thought to be impossible (Beven, 2005). Fortunately,

as in the case of this research, the users of operational flood forecasting systems are concerned

solely with reducing the total or global output uncertainty (Montanari, 2011). In this respect,

both formal and informal approaches have shown success in providing global uncertainty

estimates (Vrugt et al., 2003; Brath et al., 2004; Beven, 2006).
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Formal approaches are based on Bayesian inference which maintains that model parameters

are in themselves random variables with unknown distributions. In formal methods, the

posterior distribution of a parameter is updated sequentially as evidence becomes available

thereby becoming the prior distribution with each time step. Such an approach assumes that

enough information in measurements/observations is present to define distributions, and the

likelihood (or probability) of defining a model is directly proportional to the prior probability

density of observations (Mantovan and Todini, 2006). An advantage of formal methods is that

the likelihood function leads to reduced uncertainty in the estimated parameter values as

more data become available (Beven, 2009). A possible limitation of formal methods is their

assumption that the error model is stationary and ergodic (Montanari, 2007), which is often

not the case in hydrological modeling (Vrugt et al., 2009). Nonetheless, using this assumption

enables Bayesian inference to extend information, collected from observations, to unknown

events rather than neglecting the information (Montanari, 2007). (A more in-depth analysis of

formal methods is provided in Chapter 6 of this thesis.)

In situations where data is scarce, however, a full treatment of all uncertainties with formal

approaches can be prohibited by the ability to define prior probability distributions due to

epistemic error (i.e., lack of knowledge or evidence). Moreover, informal theory maintains

that it is not possible to define an appropriate likelihood function by ignoring the effects of

epistemic uncertainty; assuming all errors are inherently aleatory, as in formal methods, can

lead to over-fitting (Beven et al., 2011).

Currently, the most utilized informal method to address the issue of epistemic uncertainty in

data-sparse regions is the GLUE Monte Carlo approach (Beven and Binley, 1992), inspired by

the generalized sensitivity analysis methodology proposed by Spear and Hornberger (1980).

GLUE adheres to the concept of equifinality where more than one parameter set is feasible

and thereby multiple likely models, or working hypotheses (Beven et al., 2012), are possible.

This method assumes that epistemic uncertainties exist in environmental modeling because

observations do not contain enough information and can contain disinformation (Beven and

Westerberg, 2011). As a result, even if many simulations are conducted, it is still not possible

to know the entire distribution of a random variable; it is only possible to know a few values

that a random variable can express. Thus, an assumption for GLUE is that prior to the input of

data into a model, all models and parameter sets have an equal likelihood of being acceptable

(if there is no previous information provided on parameter distributions). Then, one generates

multiple model runs by randomly sampling the parameter space to derive statistics of the

output. Based on the results of numerous model runs, a subset of the parameter space is

provided which can plausibly assert whether parameter sets which perform well are contained

in the sample space. The output is weighted through a formal likelihood measure in order to

define acceptable solutions.

Some issues of the GLUE approach include that it samples the space of the model structure in-

efficiently with its random approach. Also, the formal likelihood measures employed in GLUE

have been found to provide inconsistent estimates of the probability density of the model
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output (Montanari, 2007), although solutions have been proposed (Beven and Freer, 2001). As

a result, with the classical GLUE methodology, it is not possible to obtain confidence limits

in the probabilistic sense with a given frequency (Montanari, 2005); GLUE confidence limits

are more accurately described as plausibility intervals (Montanari, 2011). Most significantly,

a primary disadvantage of GLUE is that its output can be dependent on subjective, formal

likelihood measures which are inherently not probabilistic.

To address these issues, integration of different types of information (soft and hard) can be

made (within an unavoidably subjective framework (Montanari, 2011)) which can attempt to

use both formal statistical and informal treatments for some part of the forecasting cascade.

Winsemius et al., (2009) deals with data limitation constraints by defining quasi-objective

limits of acceptability based on estimations of targets defined by interannual variabilty. These

targets are based on statistical and hydrological signatures of available river discharge data and

soft data (e.g., monthly water balances). Most recently, headway has been made in defining

limits of acceptability for non-stationary biases with informal approaches. Liu et al. (2009)

have allowed for a combination of input and model structure error based on uncertainty in

the rating curve with dynamic limits which provide over- or under-predictions with every time

step.

1.4 Research objectives and thesis organization

Considering an evaluation of uncertainty assessment methodologies aforementioned, along

with the sources of complexity for the hydrological component of the flood forecasting model,

this research has the aim of reducing model output uncertainty by providing a plausible

range of good performing models. In practice this will be achieved by matching the observed,

dynamic behavior of the catchment with the hydrological model. The operational flood

forecasting model in question is RSII, a semi-distributed conceptual model which describes a

vast and complex 4,000 km2 catchment area characterized by significant hydropower schemes

which drains into the Upper Rhone River in the Valais region of the Swiss Alps. Although this

model has been in operation since 2005, it has been unable to accurately simulate measured

hydrologic responses in two problematic catchments. (The study catchments and hydrological

model are fully detailed in Chapter 2 of this thesis.) This dissertation will test the proposed

improvements on the concerned catchments and will focus on improving specific hydrograph

behaviors with the thesis work flow process depicted in Figure 1.4.

Objective 1: Inputs, Thesis Chapters 3 and 4

The first objective of this dissertation will be to improve the representation of inputs by esti-

mating accurate instantaneous rainfall volumes and temperature gradients given all available

point observations and reanalysis outputs. COSMO forecast reanalyses will be used as addi-

tional input due to the limited number of gauges at high altitudes and due to the fact that

COSMO reanalyses (corrected with data assimilation) are based on integrating meteorological

variables over the vertical atmospheric profile, not solely measured variables at the ground.

11



Chapter 1. Introduction

Objec�ve 1: 

Inputs 
(Precipita�on, 
Temperature) 

Objec�ve 2: 

 Processes 
(Snow melt) 

Objec�ve 3: 
Parameter and 
Model Output 

Uncertainty 

Figure 1.4: Work flow of thesis. Objective 1 is dealt with in Chapters 3 and 4, Objective 2 in
Chapter 5 and Objective 3 in Chapter 6

Input uncertainty will be assumed to decrease when the variability of the spatial and temporal

distribution of the observed hydrological variables (rainfall and temperature) is better rep-

resented. Supporting this hypothesis is a recent analysis of the study region with a similar

hydrological model (Hingray et al., 2010). In this analysis, uncertainty was identified as stem-

ming from the precipitation and temperature inputs (Objective 1) as well as the parameters

and processes influencing effective liquid water for runoff (Objectives 2 and 3).

Objective 2: Processes, Thesis Chapter 5

The second objective of this research will focus on improving the snowmelt model process. It is

assumed here that an overly simplified snowmelt model is included in the current hydrological

model and a new formulation of mathematical equations is expected to better represent

melting so that it is more physically-based. Epistemic model structural uncertainty will

be addressed by better emulating measured radiation effects on melt rather than using a

constant degree-day melt factor. By developing a more physically-based, minimalist snowmelt

estimation model which requires minimal data inputs, this development will be expected to

be useful for a broad range of hydrological models (lumped, distributed, etc) utilized in flood

forecasting schemes.

Objective 3: Parameter and model uncertainty, Thesis Chapter 6

The third objective of this research will be to create a tool for managers to identify plausibility

intervals defined by acceptable parameter sets so that operators can easily handle decision-
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making for preventive hydropower management. In the presence of limited and uncertain

information typical of Alpine contexts where not all measured data have the required time

step and/or data is scarce or missing, a probabilistic framework is not straightforward (Win-

semius et al., 2009). The basis of the proposed method is GLUE (Beven and Binley, 1992)

because of its adaptability to data sparse regions and its demonstrated competitiveness with

formal methods (Vrugt et al., 2009). In Chapter 6 of this thesis, the GLUE methodology is

adapted to constrain plausible model outputs with strict limits of acceptability based on

peak flows. Multi-criteria analysis and a customized visualization interface are designed to

aid water resource managers in understanding the limits of hydrological modeling certainty.

Through the use of these tools and the integration of input and process improvements, an

improved calibrated hydrological model leads to the reduction of flood forecasting uncertainty.

The subsequent chapter of this thesis introduces the input data and hydrological models used

in this work. It should be noted that both hydrological models were originally developed

under previous research projects. As a result, a comprehensive description of both models is

given based on previous studies. Further details of the hydrological models and results from

previous applications can be found in the references provided.

In addition, Chapters 3-5 represent a collection of papers that have either been published

in scientific journals or are in the process of final review before publication. These chapters

describe work developed principally by the author of this thesis with the guidance of the other

authors listed below:

Chapter 3: Tobin, C and L. Nicotina and M.B. Parlange and A. Berne and A. Rinaldo 2011.

Improved interpolation of meteorological forcings in a Swiss Alpine region, J. Hydrol. 401, 77-89.

Chapter 4: Tobin, C. and A. Rinaldo and B. Schaefli 2012. Snowfall limits and hydrological

modeling. In press. J. Hydrometeor.

Chapter 5: Tobin, C. and B. Schaefli and L. Nicotina and S. Simoni and G. Barrenetxea and R.

Smith and M.B. Parlange and A. Rinaldo 2012. Improving the degree-day method for sub-daily

melt simulations with physically-based diurnal variations. Minor revisions finalized, Advance.

Water Resour. Special Issue Snow and Atmosphere.
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Chapter 2
MINERVE and hydrological modeling

2.1 Background

This thesis has been supported by the MINERVE project, a joint venture funded by the Swiss

Federal Office on the Environment (OFEV) and the governments of the Valais and Vaud

cantons in Switzerland. The goal of this project is to manage floods by using the retention

capacity of existing dams and reservoirs in the Upper Rhone River basin in the Valais region

of Switzerland (see Figure 2.1). The project complements the Third Rhone Correction plan,

currently in progress, which involves physically changing the Upper Rhone River banks and

adapting channel roughness properties so that both measures can provide protection against

flooding in the Upper Rhone River valley region.

The first phase of the MINERVE project was initiated in 1999. At this time, a hydraulic-

hydrological model, Routing System II (hereafter referred to as RSII) was developed at the

Swiss Federal Institute of Technology (EPFL), Lausanne. This tool combines a hydrological

forecasting model with a decision optimization tool for hydraulic structures (Garcia Hernández

et al., 2011). Based on the discharge forecast, the optimization tool can recommend preventive

turbine and gate operations for hydropower reservoirs to enable an increase in reservoir

capacity in sight of an incoming strong storm event (Garcia Hernández et al., 2009a).

The hydrological model within RSII is based on the Glacier-SnowMelt-SOil CONTribution

(GSM-SOCONT) model (Schaefli et al., 2005; Hamdi et al., 2005; Hingray et al., 2006). In its RSII

version, the GSM-SOCONT model has been adapted to run on an hourly timestep for dynamic

flood forecasting purposes (see Jordan, 2007, for model details and calibration parameters). It

is used operationally with COnsortium for small Scale MOdeling (COSMO) forecast inputs.

The RSII model was successful in generating appropriate flood responses in twenty-three of

the twenty-five catchments (defined by hydrology and hydraulic works) of the Valais. However,

for two particular catchments, the Visp and the Dranse (Figure 2.1), the complex, hydrological
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Figure 2.1: Map of the Dranse and Visp catchments in Switzerland with the Valais river network.
Glaciers within the Visp and Dranse catchments are indicated in grey.

processes, including precipitation and temperature space/time distributions and rainfall-

runoff partitioning, were not able to be accurately characterized in the model. Modeling the

Visp and the Dranse catchments is complicated due to several factors: The catchments have

a complex topography, ranging in altitude between approximately 650 and 4500 m asl and

have significant glacier coverage (approximately 33 % in the Visp and 13 % in the Dranse). The

catchments are relatively ungauged, particularly at higher elevations, where most snow and

rain is deposited due to orographic effects and synoptic weather patterns. Calibrating the

model to measured discharge is an additional challenge because the majority of discharge

measurements are perturbed by hydropower operations.

A manual calibration of the RSII model was conducted between 2004 and 2007 (Jordan, 2007).

However, due to the difficulties aforementioned, all hydrograph peaks were underestimated

with the RSII model at the outlets of the Visp and Dranse catchments for the major flood

events of 1987, 1993, 1994, and 2000. Simulated initial saturation varied significantly from

measured antecedent conditions in these catchments while recession hydrographs did not

show bi-modal, slow and fast responses characteristic of measured discharge.

The overarching goal of this thesis is to further develop the RSII hydrological model to improve

input and process characterizations and associate uncertainty to the model output so that

the model can capture hydrograph responses. This is accomplished by analyzing meteo-

hydrological processes in both the Visp and Dranse catchments (or within a subset of these

catchments) and proposing methodologies for improvements in the subsequent chapters of

this thesis. In a particular study on snowmelt processes in Chapter 5, a geomorphic model

for the Dranse catchment was developed to test snowmelt methods. This spatially-explicit

model provides a physically based, semi-distributed description of the hydrologic response
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and incorporates geomorphologic information extracted from a thorough study of the digital

terrain models (DTMs) of the study catchment. This model was chosen based on the results of a

geomorphologic analysis indicating that hillslope processes dominate in the study catchments.

Below, details on the study catchments and a geomorphologic analysis of the catchments

are provided. The measured inputs, forecasts, and hydrological models are subsequently

described.

2.2 Study catchments

The catchments analyzed in this thesis are the Visp and Dranse, located in the Swiss mountain-

ous region of the Valais. The Valais is situated in the central part of the Alps. It is drained by

the Rhone River that flows from East to West and is boarded by two high mountain ranges: the

Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects,

the climate is relatively dry at the bottom of the valley and annual rainfall at approximately 500

m asl is 600 mm and 800 mm at 1600 m asl respectively. Due to orographic effects, annual rain-

fall surrounding and near the ridges of the Visp catchment is generally greater than 2800 mm.

Highest mean monthly discharges in the Valais occur during July and August due to snow and

ice melting. Due to intense rainfall, high discharge events are common between September

and October. These events induce critical situations because reservoirs are typically filled and

cannot be used to mitigate floods (Schaefli et al., 2005). Detailed topography of the Valais is

available from a 25 m × 25 m resolution digital elevation model developed by Swisstopo. The

Visp and Dranse catchments (800 km2 and 650 km2 respectively) show similar characteristics

with steep slopes, high peaks (Matterhorn, 4500 m, in the Visp) and high passes (Saas, 1800 m,

in the Visp and Grand St. Bernard, 2500 m, in the Dranse). Soil cover in the Visp and in the

Dranse is predominantly sandy-loam.

2.2.1 Analysis of catchment geomorphology

The digital terrain models (DTMs) for the Visp and Dranse catchments were processed through

the TAUDEM package to define the channel network based on drainage directions and to

derive objective information that defines the hydrologic processes in the hillslopes (Tarboton,

1997). The river networks and unchanneled flow paths were analyzed to define invariant

morphologic properties of the river basin (Rodriguez-Iturbe and Rinaldo, 1997) which are

controlling factors on the hydrologic response.

Defining a catchment and its drainage network with a fixed threshold on accumulated area

produces a distribution of unchanneled lengths, P (L ≥ l ). The experimental cumulative

density function can be estimated by means of the plotting position technique:

P = m/(n +1) (2.1)

where m is the ranking from longest to shortest unchanneled length and n is the number of
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unchanneled segments in the sample.

The unchanneled lengths define how long a water particle must travel prior to entering the

stream network. The greater the unchanneled length, the longer the water particles must

travel on the hillslopes before reaching the river network. This analysis thereby defines the

relative travel times for runoff over hillslopes within a catchment.

For the Visp and Dranse catchments, the distribution of unchanneled lengths, P (L ≥ l ), is

shown in Figure 2.2.
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Figure 2.2: Probability of exceedance for unchanneled lengths in the Dranse and the Visp.

This figure shows that the drainage density is different in the Visp and the Dranse. The Visp

flow is unchanneled for longer distances. However, in both cases, the drainage density is very

large. In other words, a water particle in the Visp basin may have to travel 7 kilometers before

reaching a channel. Similarly, the furthest unchanneled length in the Dranse is 5.5 kilometers.

This study demonstrates that flow pathways are predominantly controlled by the topography

of the catchments; the basic travel timescales are chiefly defined by travel times within unchan-

neled areas. This is due to high velocities and relatively short channeled lengths associated

with the steep topography of the catchments. The particular morphology of the catchments re-

quires a proper accounting of the structure of the residence time distributions in the hillslope

states. Although existing geomorphologically-based hydrological models have demonstrated

effectiveness in flood prediction (Bérod et al., 1995), a generalized, spatially-explicit model

of the hydrological response has been developed to be representative of hydrologic models

which are lumped in some nature. It thereby serves as a good reference for the RSII model due

to its use of physically-based descriptions for hydrologic processes. With this model, a subset

of the Dranse catchment which is unperturbed by hydraulic controls is analyzed in Chapter 5

of this thesis. This model enables a comprehensive analysis of snowmelt schemes based on an

accurate identification of natural, unperturbed flow paths across the catchment.
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2.3 Inputs

2.3.1 Meteorological forcing inputs

Precipitation and temperature inputs are obtained from a network of meteorological stations

managed by the national weather service, MeteoSwiss (Gutermann, 1986). Data from the

automatic ANETZ meteorological network is used in all studies in the subsequent chapters

(Figure 3.1). Although the network has a mean next-neighbor distance of 7 km, these stations

are more limited in the high elevation regions of the study catchments as discussed in Chapter

4 of this thesis.

2.3.2 COSMO Forecasts

Operationally, the RSII model is driven by COnsortium for small Scale MOdeling (COSMO)

forecasts. Studies in this thesis concern the two most utilized deterministic COSMO models,

COSMO2 and COSMO7. Both models are non-hydrostatic limited-area models integrated at

horizontal resolutions of 2 x 2 km2 and 6.8 x 6.8 km2 respectively (Addor et al., 2011). They

use a generalized terrain-following height coordinate with user-defined grid stretching in

the vertical. Data assimilation is performed using nudging to update model states based on

observations from radio soundings and pilots, conventional surface station data (such as

MeteoSwiss ANETZ temperature and precipitation data), AMDARs (i.e., airplane data), data

from ships and buoys, wind profilers, and radar data (for COSMO2 only). The forecast ranges

for COSMO2 and COSMO7 are 24 and 72 hours respectively.

Grid-scale clouds are resolved in the COSMO models by using a scheme including ice clouds

as a prognostic variable, which leads to a function describing the fraction of cloudiness. The

partitioning of water into water vapor, the non-precipitating categories of cloud water and

cloud ice, and the precipitating categories, i.e. rain, snow, and graupel (graupel, in the case of

COSMO2 only) is performed by a prognostic scheme where the full hydrological budget equa-

tions for precipitating hydrometeors are solved (including 3-d advective transport). Further

details on the parameterization of cloud and precipitation physics, boundary layer turbulence

and surface fluxes are detailed in COSMO (2011).

The differences between COSMO2 and COSMO7 relate to their driving forces, their configu-

rations, their reinitialization frequencies and their treatment of convection. The initial and

lateral boundary conditions, i.e., the driving models, for COSMO7 and COSMO2 are the Inte-

grated Forecasting System (IFS) from ECMWF and COSMO7, respectively. COSMO7 has 45

vertical layers while COSMO2 has 60 layers, both with model tops set at 20 hPa. Below 3 km

in the atmospheric profile where melting typically takes place, the COSMO model’s vertical

grid spacing becomes progressively finer closer to the ground. Vertical differences range from

approximately 1200 m between the top layers at 3 km to a difference of approximately 20 m at

the ground. The frequency of reinitialization of COSMO2 is every 3 hours (i.e., 8 runs per day)

whereas the COSMO7 model is re-initialized twice per day. The COSMO7 model parameterizes
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both deep and shallow convection while COSMO2 considers only shallow convection because

its high resolution enables the explicit resolution of deep convection, which reduces model

uncertainty (Weusthoff et al., 2010). COSMO-7 deep convection is parameterized by the mass

flux scheme of Tiedtke (1989).

Numerous research endeavors have demonstrated the success of these COSMO products

in the MAP D-Phase project (Mesoscale Alpine Programme Demonstration of Probabilistic

Hydrological and Atmospheric Simulation of flood Events in the Alpine region). Bauer et al.

(2011) showed that the COSMO models are capable of forecasting correct distributions of

precipitation, particularly for low precipitation thresholds. In complex terrain, COSMO2

has been shown to yield better precipitation forecasting performance than coarser COSMO

products due to its more frequent initialization and its explicit calculation of deep convection

(Weusthoff et al., 2010; Ament et al., 2011). Similarly, flood peaks have been proven to be

accurately captured with short-term COSMO2 forecasts (Zappa et al., 2008).

Although, this research will not use the COSMO forecasts real time, since the goal of this thesis

is to improve and calibrate the hydrological model, this dissertation will take advantage of

COSMO reanalyses to provide a greater meteorological context to the flood event analyses. In

using COSMO as input, each elevation band of the hydrological model (details of the hydrolog-

ical model are provided in the next section of this Chapter) is assigned the closest COSMO grid

point using MeteoSwiss procedures where the Euclidian distance in the horizontal is summed

with the vertical difference multiplied by a correction factor. The correction factor is used to

make the vertical and horizontal differences have relatively equal importance in spite of the

vertical distance being typically an order of magnitude less (Kaufmann, 2008).

2.4 MINERVE model - Routing System, RSII

RSII is a semi-distributed, reservoir-based model that has been implemented for operational

flood forecasting (see Jordan, 2007; Hingray et al., 2010, for model details and calibration

parameters). Catchment limits are defined according to topography described by a 25 m reso-

lution DTM. Hydraulic works (i.e. water diversions due to pumping and piping configurations)

act as physical constraints in the model.

Each subbasin is discretized on two levels: 1) the separation of ice-covered and non ice-covered

portions based on DTM data; and 2) the division of each subbasin into a set of elevation bands,

set at approximately every 300 m. The Visp and Dranse catchments are subdivided into 32

and 35 subbasins respectively. Each subbasin is represented as a set of spatial units, each of

which is assumed to have a homogenous hydrological behavior.

The RSII runoff model depends on whether the elevation band forms part of the ice-covered

area. According to Schaefli et al. (2005), the total runoff from the entire catchment can be
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defined as

Q =
2∑

i=1

n j∑
j=1

ai , j ×Qi , j (2.2)

Where i is an index for either the snow-covered or ice-free part of the catchment and j is an

index for each of the n j elevation bands in part i . ai , j (km2) is the area of an elevation band j

belonging to the catchment part i and the Qi , j (mm h−1) is the mean hourly specific runoff

from this spatial unit, rather than daily as in Schaefli et al. (2005).

Details of the RSII hydrological modeling components are listed below.

2.4.1 Inputs

Temperature and precipitation inputs are interpolated with Inverse Distance Weighting, IDW

(Isaaks and Srivastava, 1989), to the centroid of each elevation band in the x,y,z space and

are assumed to be representative of the whole band. Temperature interpolation is based

on an altitude dependent regression of the observations at meteorological measurement

stations located in or nearby the study catchments. Temperature interpolations are carried

out on normalized measured data, detrended for elevation. Vertical distributions are then

extrapolated using a constant lapse rate of -6.5 ◦C per 1000 m. Temperature time series

are computed separately for each elevation band. Precipitation is assumed to be uniform

over each subbasin, i.e. all elevation bands within a subbasin have the same quantity of

precipitation.

As discussed previously in Chapter 1, Section 1.2.2, accurate precipitation and temperature

interpolations are critical in Alpine environments. It should be noted that temperature in-

terpolations have significant impacts in the Dranse and Visp catchments. As shown by the

hypsometric curves in Figure 2.3, if temperatures are not correctly interpolated with altitude

spatially (i.e., assigning improper lapse rates), the contributions of snow and rainfall to runoff

can be highly inaccurate. In fact, an error of 2 ◦C or approximately 300 m (as indicated by

the horizontal lines on Figure 2.3) can account for approximately 15 % of the relative surface

area (indicated by the vertical lines) in the watersheds which does not contribute correctly

to the rainfall-meltwater-runoff transformation. Therefore, temperature errors can provide

inaccurate productions of runoff by all components of the hydrological model described

hereafter.

2.4.2 Snow model production

For each elevation band, the temporal evolution of the snowpack is computed based on an

accumulation and melt model. This model is a function of temperature T and precipitation P .

Snowmelt contributes to the equivalent precipitation (Peq ) which is used as an input variable
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Figure 2.3: Hypsometric curves for the Visp and Dranse catchments in the Upper Rhone River
basin of the Valais region in Switzerland. Lines indicate an incorrect lapse rate of 2 ◦C (i.e., 300
m) which produces a miscalculation of surface area contributing to runoff (approximately
15%).

by the infiltration or glacier model.

The RSII model uses the degree-day method to define the melt as defined by MN in Figure 2.4

and Equation 2.3. This approach has been justified on physical grounds in other hydrological

models (Rango and Martinec, 1995). According to Schaefli et al. (2005), the snow and glacier

degree-day factors have a major influence on the simulation quality during summer months.

Figure 2.4: RSII snow melt production (Garcia Hernández et al., 2007).

In the first step of the snow model, precipitation is partitioned per elevation band into snow-

and rainfall using a linear transition between 0◦C and 2◦C based on sensitivity tests with the

hydrological model, other studies (Zappa et al., 2003; Schaefli et al., 2005; Kienzle, 2008) and

other observations from the Swiss Alps (Rohrer and Braun, 1994). Below 0◦C all precipitation is
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considered to fall as snow and above 2◦C only rainfall occurs. In between these two thresholds,

a mixture of rainfall and snowfall occurs.

The total discharge of the snow module depends on the snow height, temperature and parti-

tioning between rain and snow. Snowmelt or freezing is calculated based on the degree-day

method (Rango and Martinec, 1995) as follows:

Mn =
{

ac (1+bp Pl )(T −T cr ) if T ≥ Tcr and Mn ≤ N + Hn
d t

ac (T −Tcr ) if T ≤ Tcr and Mn ≥ −Wn
d t

(2.3)

where Pl is the liquid precipitation (m s−1), N is the solid precipitation (m s−1), Tcr is the

critical temperature 0◦C, bp is the precipitation coefficient due to snowmelt fixed at 0.0125 (s

m−1), ac is the degree-day factor (mm day−1 ◦C−1), −Wn
d t is the dynamic water content (m s−1)

and Hn
d t is the dynamic snow height (m s−1).

Refreezing is calculated analog to melting and assumes that the melt and refreezing rates are

the same, similar to Bergstrom (1975). The water content of the snowpack evolves every time

step when the ratio of the liquid to solid water store in the snowpack (the snowpack’s relative

liquid water content) is computed. Water outflow of the liquid store (called snowpack outflow)

only occurs if this relative liquid water content is above a critical retention capacity θr , which

is fixed to 0.09 in the analyses with the RSII model.

2.4.3 Glacier model production

The total discharge of the glacier depends on the transfer processes within the linear snow on

glacier and glacier reservoirs RN and RGL (Figure 2.5).

Equivalent precipitation Peq for the snow on glacier model is provided by the snowmelt model

previously described and is transferred to the linear snow on glacier reservoir RN according to

Figure 2.5.

Equivalent precipitation PeqGL for the glacier model is dependent on the critical temperature

Tcr and snow height HN . It is defined as follows:

PeqGL =
{

0 if T ≤ Tcr or HN > 0

AGL(T −Tcr ) if T > Tcr and HN = 0
(2.4)

where PeqGL is the glacier melt (m s−1) and AGL is the degree-day glacier melt coefficient (mm

day−1 ◦C−1).

The change in storage of the linear snow on glacier reservoir is defined as:

d HNGL

d t
= Peq −KN HNGL (2.5)
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Figure 2.5: RSII snow and glacier reservoirs (Garcia Hernández et al., 2007).

where HNGL is the level in the linear snow on glacier reservoir (m) and KN is the release

coefficient of the linear snow reservoir (s−1).

The outflow of the linear snow on glacier reservoir QNGL is:

QNGL = KN HNGLSGL (2.6)

where QNGL is in (m3 s−1) and SGL is the surface area of the glacier (m2). The snow on glacier

model produces discharge when snow is present on the glacier.

Similarly, the change in storage of the linear glacier reservoir is defined as:

d HGL

d t
= PeqGL −KGL HGL (2.7)

where PeqGL is the glacier melt (m s−1), HGL is the level of the glacier melt reservoir (m) and

KGL is the coefficient of the linear glacier reservoir (s−1).

The outflow of the linear glacier reservoir is:

QGL = KGL HGLSGL (2.8)
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where QGL is in (m3 s−1) and SGL is the surface area of the glacier (m2).

The glacier model only provides the discharge when the snow level is zero, HN = 0.

The discharge produced by the glacier melt PeqGL is transferred to the linear glacier reservoir

RGL and the resulting glacier discharge QGL is summed with the snow on glacier discharge

QNGL at the outlet of the subcatchment to produce the total discharge Qtot .

2.4.4 Infiltration model production

The infiltration or groundwater reservoir model is the next reservoir used to define rainfall-

meltwater-runoff transformation (Figure 2.6). The infiltration reservoir has a slow and fast

component.

Figure 2.6: RSII infiltration reservoir (Garcia Hernández et al., 2007).

Infiltration, ii n f (m s−1), is defined with a non-linear relation and is a function of the water

level in the groundwater reservoir h, the maximum height of groundwater reservoir hmax (m)

and the equivalent precipitation Peq .

ii n f =
{

Peq (1− ( h
hmax

)2) if h ≤ hmax

0 if h > hmax
(2.9)

Real evapotranspiration RET (m s−1) is also described as a non-linear process as a function h

and hmax . It is based on the potential evapotranspiration PET (m s−1).

RET =
{

PET
√

h \ hmax if h ≤ hmax

PET if h > hmax
(2.10)
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Base flow is defined by a linear relation:

Qbase =
{

khS if h ≤ hmax

khmax S if h > hmax
(2.11)

where Qbase is the base discharge (m3 s−1), k is the release coefficient of the groundwater

reservoir (s−1) and S is the surface area (m2).

With the fluxes previously defined, the dynamic height of the water level in the groundwater

reservoir is defined as follows:

dh

d t
= ii n f −RET − Qbase

S
(2.12)

2.4.5 Overland flow model

The transfer of the net intensity to an impermeable surface is carried out by the help of a

non-linear transfer reservoir.

The net intensity (m s−1) is defined by the infiltration component of the model previously

described.

inet = Peq − ii n f (2.13)

The description of this reservoir is based on the SWMM model (Metacalf, Eddy, 1971), where

overland flow is modeled with the Manning-Strickler equation. This is a standard flow resis-

tance relation linking velocity, slope and hydraulic features for open channel flows (Chanson,

2004).

Runoff intensity, ir (m s−1), is defined as:

ir = Ks

√
(Jo)(hr )5/3 B

S
(2.14)

where hr is the runoff water level downstream of the surface (m), Ks is the Strickler coefficient

(m1/3 s−1), Jo is the average slope of the plane, B is the width of the plane (m) and S is the

surface area (m2).

The runoff discharge for overland flow is defined as:

Qr = ir

S
(2.15)
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2.4.6 Channel routing

Overland flow is routed based on three flow routing schemes for channel flow: 1) St. Venant

routing for a trapezoidal section, 2) Muskingum-Cunge (diffusive wave with celerity and

diffusion coefficients) or 3) the kinematic wave (where the terms of inertia and pressure of the

St. Venant equations are assumed negligible).

The parameters used for calibration from the components of the RSII hydrological model are

summarized in Table 2.1. No channel routing parameters were calibrated because they were

defined by physical cross-section features assumed to be constant.

Table 2.1: RSII calibrated hydrological model parameters

Snow model
Parameter (unit)
Snow degree-day factor (mm day−1 ◦C−1)
Critical retention capacity (-)

Infiltration model
Release coefficient of groundwater reservoir (s−1)
Maximum height of groundwater reservoir (m)

Glacier model
Coeffient of linear snow reservoir (s−1)
Coeffient of linear glacier reservoir (s−1)
Glacier degree-day factor (mm day−1 ◦C−1)

Overland flow model
Strickler coefficient (m1/3s−1)
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2.5 Spatially-explicit model of the hydrological response

If water flow within natural formations (the whole catchment, composed of geomorphological

states objectively connected through channeled or unchanneled pathways) can be seen as a

conservative process, water particles are described as moving within control volumes towards

an absorbing barrier (the catchment outlet) without significant variations of their mass. This,

of course, entails a suitable partitioning of total snow/rainfall into effective components, as

described in the previous sections. In this section we focus of the basic scheme that allows

a model of the hydrologic response to become spatially-explicit i.e., capable of describing

arbitrary geometrical attributes in an exact manner without discretizing differential balance

equations. The formulation of transport by travel time distributions, neither Eulerian nor fully

Lagrangian in nature but mathematically equivalent, serves as an ideal model for complex

terrain (Rodriguez-Iturbe and Valdés, 1979; Gupta et al., 1980; Dagan, 1989; Rodriguez-Iturbe

and Rinaldo, 1997; Rinaldo and Rodriguez-Iturbe, 1996) by employing in full, the large-scale

collection and objective manipulation of geomorphic, hydrologic and/or land use data which

are commonplace in science and engineering practice today. This section therefore describes

the theoretical framework for a class of general continuous models of the hydrologic response.

The approach consolidates and gives order to theoretical results from other fields in a coherent

theoretical framework for both hydrologic flow and transport.

Let m be the (time-independent) water mass transported by a single particle injected at time

t0=0 in the initial position x0. Each ensuing trajectory is defined by its Lagrangian coordinate

X(t ) =x0+
∫ t

0 v(X(τ),τ)dτ, where v(x, t ) is the point value of the advective velocity vector. Note

that a precise definition of the momentum balance that yields the field v(x, t ) is immaterial in

this context, owing to the kinematic (and general) nature of the analysis. Indeed v may in turn

describe Darcian or Richards-like flows in variably saturated, gravity-driven flows appropriate

for describing unchanneled pathways, or open-channel flow velocities can be noted in riverine

branches. The spatial distribution of water concentration c in the transport volume V as a

result of the injection of a single particle is given by (Taylor, 1921):

c(x, t ) ∝ m δ(x−X(t )), (2.16)

where δ(.) is Dirac’s delta distribution and, without loss of generality, we have assumed unit

porosity within the whole control volume (i.e.
∫
V cw dx=mw ). Note that the proportionality

in Equation (2.16) stems from the assumption of constant porosity of the transport volume

along the flow paths, which proves feasible for a variety of cases of interest (Dagan, 1989).

Equation (2.16) states that, in the one-particle one-realization case, volumetric water concen-

tration (water mass per unit transport volume) is nonzero only at the site where the particle is

instantaneously residing (i.e. at its trajectory). Thus uncertainty in the dynamical specification

of the particle (i.e. the evolution in time and space of the trajectory X(t ) of the labeled, traveling

’water particle’) is reflected in the transport process.

Owing to the heterogeneity which characterizes transport processes and environments at
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basin scale, the trajectory is seen as a random function. Let therefore g (X)dX be the probability

that the particle is found within the infinitesimal volume dX located around the position X

at time t (notice that the functional dependence g (X) implies g (x, t) in terms of Cartesian

coordinates because of the evolution of the trajectory with time). The ensemble average

concentration 〈c(x, t )〉 is given by the classic relation (Taylor, 1921; Dagan, 1989):

〈c(x, t )〉 =
∫ ∞

−∞
mδ(x−X)g (X)dX = m g (x, t ) (2.17)

The distribution g (x, t ) is usually called displacement probability density function. Important

models describing displacement distributions, g , or 〈cw 〉 (from Eq. (2.17) g ∝〈cw 〉), notably

the cases deriving from the Fokker-Planck equation, are reported in the literature (Rinaldo

et al., 1991). Note that the above theoretical link between displacement distributions and

mean concentrations allows the equivalence of the rate of change of displacement covariances

(heuristically, the moments of inertia of the displaced particles) with half the dispersion coeffi-

cient of the Eulerian problem, originating from the definition of shear-flow, hydrodynamic or

geomorphologic dispersion (Rodriguez-Iturbe and Rinaldo, 1997).

The displacement pdf g (x, t) due to the kinematics of the carrier flow determines the travel

time distribution f (t ) of the water carrier within the control volume. The definition of a travel

time distribution relies on the identification of a suitable control section for the transport

process considered. We thus assume that the time t at which a particle crosses the control

section is unique and, most importantly, that all particles injected in V ensuing from x0∈V

must transit to the outlet control. The probability density of travel times is proportional to the

instantaneous mass flux at the absorbing barrier of the control volume (Dagan, 1989). In fact

water mass in storage within the control volume M(t ) is expressed by:

M(t ) =
∫
V
< c > dx = m

∫
V

g (x, t )dx =
= mP (T ≥ t ) (2.18)

where P (T≥t ) is the probability that the residence time is larger than current time t . Thus, by

continuity, one has

d M(t )

d t
= I−Q (2.19)

(where I [M ][T ]−1 is the mass water input and Q(t ) [M ][T ]−1 is the mass flux at the outlet of

V ), and therefore, for an instantaneous water pulse, i.e., I (t )=mδ(t ):

Q(t ) = −mw
dP (T ≥ t )

d t
= mw f (t ) for t > 0 (2.20)

where f (t) is the probability density function (pdf) of travel times for the water carrier. In
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surface hydrology, when the input is a unit of net rainfall, such a pdf is usually termed the

instantaneous unit hydrograph (IUH).

In using the travel time formulation of transport in surface hydrology, two courses have been

pursued: one course assumes the form of the pdf, and characterizes it by some parameters of

clear physical meaning like mean travel times. An example of this are the exponential pdf’s

used to describe travel times of water particles in the seminal paper by (Rodriguez-Iturbe and

Valdés, 1979) to derive the geomorphologic unit hydrograph. The second course exploits the

equivalence of water fluxes and pdf’s to deduce travel times from the equations of motion.

Eulerian, Lagrangian or travel time approaches therefore may be derived strictly from the

same assumptions (the common prejudice of considering one approach in principle superior

to the other is therefore incorrect).

We now turn to hydrologic transport phenomena within the same framework which is deemed

particularly suitable to tackle nonstationary process in runoff formation (Botter and Rinaldo,

2003; Rinaldo and Marani, 1987). Within such a domain, a given amount of tracer (of mass

ms) is injected within the control volume through an instantaneous release of water, and is

thus allowed to move within the transport volume driven by the hydrologic carrier flow and to

exchange mass within the surrounding environment. The reactive character of the transport

is described by the (spatial and/or temporal) variability of the solute mass associated with the

water particles moving within the control volume, that is, the function ms=ms(X, t ; t0) which

embeds physical, chemical or biological exchanges with immobile phases in some contact

with the carrier flow. Note that the so-called active transport framework (that is where the

presence of the tracer provides a feedback on the velocity field, e.g. for non-acqueous phase

liquids) is not considered herein.

One-particle, one-realization concentration fields resulting from the injection of a single

reactive particle are given by the following equation:

cs(x, t ;x0, t0) ∝ ms(X, t ; t0) δ(x−X(t )), (2.21)

The reactive components involved define the instantaneous solute mass ms attached to the

moving particle without affecting the trajectory X of the particle itself which is determined

by the usual kinematic relationship. The mass transfer occurring between the carrier and

immobile phases (e.g. chemical or physical sorption, ion exchange, precipitation) leads in

general to variability for m both in time and space. We assume, however, that the injection

area is much larger than any correlation scale of heterogeneous transport properties and/or

that the temporal scales relevant for the undergoing advective processes are smaller than

(or, at most, comparable with) the characteristic timescales for the reaction processes. This

suggests (Rinaldo et al., 1989; Rinaldo and Rodriguez-Iturbe, 1996; Botter et al., 2005) that

the spatial gradients of mass exchange become negligible and that, therefore, contact time

among fixed and mobile phases alone drives mass transfer between phases (i.e. the well-mixed

approximation (Botter and Rinaldo, 2003)). The injection of identical particles labeled by
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carrier and solute masses mw ,ms at different initial locations x0 at time t0 produces, at time

t>t0, the sampling of different trajectories X(t ) but yields roughly the same temporal evolution

of the mass of solute transported ms(t−t0, t0), which thus depends (for a given injection time

t0) solely on the time available for the reaction processes, t−t0. The expected value of the

volumetric concentration 〈cs(x, t )〉 (solute mass for unit transport volume) is then given, from

Eq. (3), by the relation (Rinaldo and Rodriguez-Iturbe, 1996):

〈cs(x, t ; t0)〉 = ms(t − t0, t0) g (x, t − t0) (2.22)

where the similarity of structure with respect to passive transport stems from the fact that ms

is unaffected by ensemble averaging. Thus a generalization of Taylor’s theorem for reactive

transport problems is defined (Rinaldo and Marani, 1987). The displacement distribution

g defines the structure of the carrier residence time distribution within the control volume

and thus epitomizes the complex chain of events determining the hydrologic flow. The mass

function ms(t−t0, t0) accounts for all sorption/desorption processes which determine the

temporal variability of the solute mass transported by the moving water particles.

The solute mass instantaneously stored in the water carrier within the transport volume V (as

a result of a solute injection occurring at t=t0) may be thus expressed by the usage of Eq. (2.22)

as:

Ms(t ) =
∫
V
< cs(x, t ; t0) > dx

= ms(t − t0, t0)P (T ≥ t − t0) (2.23)

where P (T≥t ) is the probability that the residence time is larger than the current time t . Thus,

deriving Eq. (2.23) with respect to t , one has:

d Ms(t )

d t
=−ms(t − t0, t0) f (t − t0)+ dms

d t
P (T ≥ t − t0) (2.24)

where the last term of the right-hand side of the above equation represents the rate of solute,

say R ([M ][T ]−1), transferred from the immobile phase to the water carrier due to the active

reaction processes. Since for t > t0 by continuity one has d Ms/d t=−Qs+R (where Qs [M ][T ]−1

is the solute flux at the outlet of V ), by comparison with Eq. (2.24) we obtain:

Qs(t ; t0) = ms(t − t0, t0) f (t − t0) for t > t0 (2.25)

Equation (2.25) expresses the solute flux at the outlet due to the injection within the control

volume at t=t0 of an instantaneous water pulse carrying a solute mass ms which is time-

dependent owing to mass exchange processes.
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One example of application deals with nonpoint source pollution. Therein, one assumes that

the solutes transported by the carrier entertain mass exchange phenomena with immobile

phases in contact with the water flow (e.g. soil grains, bed sediment, dead-end zones). The

mass transfer between phases is therefore driven by the difference between the solute con-

centration sorbed in the immobile phase and the solute concentration, say C , characterizing

the water particles moving along the control volume (solute mass for unit water volume)

(Van Genuchten, 1981). The latter may be straightforwardly derived by use of Eqs. (2.17) and

(2.22) as:

C (t − t0, t0) = ρ 〈cs(x, t ; t0)〉
〈cw (x, t ; t0)〉 = ρ

ms(t − t0, t0)

mw
(2.26)

where ρ is the (constant) water density ([M ][L]−3). Notice that in Eq. (2.26) the capital letter

C is employed for the solute concentration of the water particles (solute mass for unit water

volume), so as to highlight the difference with respect to the volumetric concentration of

solute cs (mass for unit transport volume). Notice that at a given time t , the water particles

injected into the system at the same injection time t0 are all marked by the same resident

concentration C (t−t0, t0), independently from their trajectory. This is, of course, an important

assumption which nonetheless seems applicable to most cases where rainfall is the driving

factor (Botter et al., 2005; Botter and Rinaldo, 2003).

Note that it is appropriate to state clearly the mathematical analogies that stem from the

relation

τ = t − t0 (2.27)

where τ is the travel time of a single particle within the control volume after injection at time

t0, thereby the contact time between phases, and t is chronological time. Thus, one may easily

express the solute concentration of the water carrier as a function of only two of the above

timescales (e.g. C=C (τ, t0), or C=C (τ, t )).

Within the above framework, solute mass transported by the water carrier, ms , is defined by

the rate of change of the scalar property C (t−t0, t0) attached to the mobile phase. Inciden-

tally, when the scalar is simply the density of the carrier i.e. C (t−t0, t0)=const=ρ, the above

derivation reduces to the description of flowrates. In the general case, instead, the temporal

variability of the function C (which retains all sorption/desorption processes determining the

temporal variability of the mass transported by the moving particles) is related to the active

reaction processes between the phases. For example, linear rate-limited kinetics have been

assumed to drive the temporal evolution of the concentration function C (t−t0, t0) (Rinaldo

and Marani, 1987) like e.g.

∂C (τ, t0)

∂τ
= k

(
N (t )

kD
−C (τ, t0)

)
(2.28)
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where N ([M M−1]) is the concentration in the immobile phase (properly transformed by kD

([L3M−1]), the equivalent of a partition coefficient) and k ([T −1]) is the overall rate coefficient

of the reaction kinetics between mobile and immobile phases. According to the well-mixed

assumption, the concentration in the immobile phase N is assumed to solely depend on time

and not on the position x. The temporal evolution of the function N (t ) may be thus described

on the basis of a global (rather than local) mass balance, applicable to each ’state’ which is

physically meaningful to identify. This is not the case, for instance, in the other approaches

well known from the literature (Cvetkovic and Dagan, 1994).

An important indicator of the validity of the above assumptions comes from an application

where the carrier flow is in steady state, which is a particular case of the above framework for

constant input flowrates (Botter et al., 2005). Consider a steady-state flow through a generic

heterogeneous medium and assume that the underlying Eulerian velocity field is a stationary

random vectorial function v(x). The ensemble mean of the local velocity v is assumed to be

positive (i.e. a mean flow direction is determined) and – without loss of generality – aligned

with one axis. Under the above assumptions, the transport domain may be thought of as a

collection of independent and stationary streamlines, which are characterized by different

residence times owing to the heterogeneity of the transport properties involved. Solute

particles injected within the flow field, or released from the soil, are simultaneously advected

by the carrier and affected by sorption-desorption processes with immobile phases in contact

with the water flow.

In this context, a notable simplification of the transport problem may be achieved by projecting

the transport equation along a single streamline and embedding all the heterogeneities of the

transport properties within a single variable, the travel time τ (Cvetkovic and Dagan, 1994). If

we assume that linear and reversible sorption processes occur between the mobile and the

immobile phases, mass conservation yields:

∂C (τ, t )

∂t
+ ∂C (τ, t )

∂τ
= R = k2N (τ, t )−k1C (τ, t ) (2.29)

and

∂N (τ, t )

∂t
= k1C (τ, t )−k2N (τ, t ) (2.30)

where C [ML−3] represents the solute concentration in the mobile phase, N [ML−3] is the so-

lute concentration in the immobile phase (mass of solute per unit fluid volume), R [ML−3T −1]

is the sink/source term due to chemical and/or physical reactions and k1,k2 [T −1] are the

forward and backward reaction coefficients, respectively. It is worth mentioning that τ is the

time needed for a particle injected in x0 at t=0 (i.e. X(0)=x0, with X(t)=(X (t),Y (t), Z (t)) the

trajectory of the particle) to reach a control plane, perpendicular to the mean flow direction,

located at a distance x (measured along the mean flow direction) from the injection site
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(Cvetkovic and Dagan, 1994):

τ(x) =
∫ x

0

dξ

u(ξ,η(ξ),ζ(ξ))
(2.31)

The quantities η and ζ in Eq. (2.31) are the transversal displacements of the considered

particle, i.e. η(x)=Y (τ(x)) and ζ(x)=Z (τ(x)) (for a complete treatment, only sketched here, see

(Cvetkovic and Dagan, 1994, 1996)). It should be noted that Eq. (2.29) is actually fully three

dimensional, since the Lagrangian variable τ retains the 3D structure of the velocity field.

Furthermore, in Eq. (2.29) we neglect pore-scale dispersion; in heterogeneous formations, in

fact, pore scale dispersion may only affect the local values of resident concentrations but bears

a negligible overall effect on global quantities, such as mass fluxes and the spatial/temporal

plume moments (Dagan, 1989), particularly in the case of reactive solutes Botter et al. (see the

discussion e.g. in 2005).

When considering basin scales, it has been shown that ensemble averaging over different

injection points x0 embedding source areas larger than the scales characteristic of heteroge-

neous properties (thereby typically for particles injected by rainfall patterns) smooth out the

dependence on the features of the single trajectory and that the above framework, forced to

steady state, often gives negligible differences with respect to the full Lagrangian framework,

and that in practice one has N (t ,τ) ∼ N (t) (Botter et al., 2005). This leads to the simplified

formulation provided by Eq. (2.28), where the spatial gradients of immobile concentration are

neglected (Botter et al., 2005).

The solute mass flux [M/T] due to an instantaneous injection of a water flux J (t )=(mw /ρ)δ(t−t0)

([L]3[T ]−1) may be thus expressed by the use of Eqs. (2.25) and (2.26) as:

Qs(t , t0) = mw

ρ
C (t − t0, t0) f (t − t0)

= J (t0)∆t0C (t − t0, t0) f (t − t0) (2.32)

where J (t0)∆t0=mw /ρ is the water volume injected in the system during the time interval ∆t0.

Equation (2.32) states the equality between the mass response function (i.e. the solute release

corresponding to a unit water input) and the product between the carrier transfer function f

(i.e. the travel time distribution for the water flow) and its solute concentration C .

Flowrates [L3/T ] (constant mw ) and mass fluxes [M/T ] (variable ms) generated by an arbitrary

sequence of rainfall volumes J (t ) [L3/T ] (which we may treat as clean for τ=0, i.e. C (0, t0)≡0)

are thus derived, for a single transport volume, from Eqs. (2.20) and (2.32):

Q(t ) =
∫ t

0
d t0 J (t0) f (t − t0) [L3/T ] (2.33)

34
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and

Qs(t ) =
∫ t

0
d t0 J (t0)C (t − t0, t0) f (t − t0) [M/T ] (2.34)

in the two respective cases.

It is important to notice that in the case of unsteady forcing one may also need to distinguish

resident concentrations, C (t−t0, t0), from flux concentrations, say C F (t ), at the outlet of single

transport volumes (thereby only a function of current time t ):

C F (t ) = Qs(t )

Q(t )
(2.35)

C F (t ) being the solute concentration at the outlet resulting from the simultaneous arrival of

water particles which have experienced different travel times and have come into contact with

different immobile phases concentrations (Rinaldo and Marani, 1987).

In general, the determination of travel time distributions must be accomplished following an

analysis of the detailed motion of water particles in space and time over a channel network.

Indeed a complex catchment entails a nested structure of geomorphic states, quite different

from one another, where hydrologic transport occurs. Typically one thinks of hillslopes (where

solute generation within hydrologic runoff mostly occurs) and channel states (where usually

routing occurs, though exchanges with hyporheic zones or riparian vegetation or biologic

decays may be significant, especially if travel times therein become large). We thus need to

define the collection Γ of all individual paths γ∈Γ that a particle may follow up to the basin

outlet. The collection of connected paths γ=x1, x2, · · ·xΩ (where we defineΩ as the closure of

the catchment) consists of the set of all feasible routes to the outlet, that is x1→x2→···→xΩ. A

different notation clarifies the above geomorphic framework. If Ai , i=1, N is the number of

overland states whose total area covers the entire catchment (say, we neglect the actual surface

of channelized patterns), and ci defines any channel link of the catchment (N is the total

number of links), all the paths are supposed to originate within hillslopes i.e. Ai→ci→···→ cΩ,

whereΩ is the conventional notation for the outlet of the basin.

The above rules specify the spatial distribution of pathways available for hydrologic runoff

through an arbitrary network of channel and overland regions. The travel time spent by a

particle along any one of the above paths is composed by the sum of the residence times

within each of the states actually composing the considered path. Nevertheless, the time Tx

that a particle spends in state x (x=Ai or x=ci ) is a random variable which can be described by

probability density functions (pdf’s) fx (t ). Obviously, for different states x and y , Tx and Ty can

have different pdf’s fx (t)6= fy (t) and we assume that Tx and Ty are statistically independent

for x 6= y . For a path γ∈Γ defined by the collection of states γ=〈x1, ..., xk〉 (where, in turn,

x1, · · · , xk∈(A1, .., AΩ,c1, ..,cΩ)) we define a travel time Tγ through the path γ as:

Tγ = Tx1 + .....+Txk (2.36)
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From the statistical independence of the random variables Txi it follows that the derived

distribution fγ(t) of the sum of the (independent) residence times Txi is the convolution of

the individual pdf’s:

fγ(t ) = fx1 ∗· ·∗ fxk (2.37)

where the asterisk ∗ denotes the convolution operator.

Travel time distributions f (t) at the outlet of a system whose input mass is distributed over

the entire domain are obtained by randomization over all possible paths (Rodriguez-Iturbe

and Valdés, 1979; Gupta et al., 1980; Rodriguez-Iturbe and Rinaldo, 1997):

f (t ) = ∑
γ∈Γ

p(γ) fγ(t ) (2.38)

where γ is the arbitrary path constituted of states 〈x1, ..., xk〉, fγ is the path travel time distribu-

tion as given by Eq. (2.37) and γ is the arbitrary path from source to outlet; furthermore, p(γ)

is the path probability, i.e.
∑
γ∈Γ p(γ)=1, defining the relative proportion of particles in γ.

We now define (and generalize) different types of path probabilities. In the simplest case, the

path probabilities may be simply defined as p(γ)=Aγ/A, where Aγ is the contributing area

draining into the first channel state of any given path γ. In such a case
∑
γ∈Γ Aγ=A, where A is

the total area drained by the channel network, and the path probability is solely determined

by geomorphology. The above time-independent determination of the path probabilities is

tantamount to assuming uniform rainfall in space, and this severely constrains the size of the

catchment to be modeled, which is related to the basic scale of spatial heterogeneity of rainfall

patterns.

Where rainfall patterns, say j (x, t), are distributed in space and time, the path probabilities

would be simply dictated by the relative fraction of rainfall, i.e.

p(γ, t ) =
∫

Aγ
j (x, t ) dx∫

A j (x, t ) dx
= J (γ, t )

J (t )
(2.39)

(where J (γ, t )d t=d t
∫

Aγ
j (x, t ) dx is the total quantity of rainfall entering the system in (t−d t , t )

through the path γ, and J (t )d t is the total rainfall injected in the same period over the entire

watershed) which enables any rainfall pattern in space and time to be routed through the

catchment at each time interval. This capability is central to the innovation contained in our

model, and constitutes a new and relevant extension of traditional GIUH approaches.

Whether a pattern in space and time of j (x, t) derives from the characters of rainfall or of

runoff production will be seen elsewhere. Notice that we may derive arbitrary rainfall fields

either by kriging of point rainfall measurements, or by assuming stochastic patterns derived
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from theoretical models. Hence one might derive the rainfall-weighted path probabilities in

the general case by simple quadratures. A reliable operational procedure consists of isolating

through suitable drainage directions on digital terrain maps a spanning set of subbasins of

size considerably smaller than the macroscales of intense rainfall patterns, thereby defining

spanning sets of landing areas γ where one can assume locally constant rainfall intensity

J (γ, t ). This procedure is tantamount to a coarse-graining of the original rainfall patterns from

the pixel size to that of a collection of thousands of them, with much improved computational

efficiency at no cost of predictive loss. Moreover, any spatially distributed model of runoff

production would result in distributions of input j (x, t ) that are markedly heterogeneous in

space.

Moreover, whether or not one needs to modify travel times depending on the intensity of the

hydrologic events (e.g. geomorphoclimatically) depends by the modes of hydrologic transport,

say when dominated by storage rather than kinematic effects, but the basic formal machinery

remains unaffected. Many papers have addressed the characterization of travel times and

the related hydrologic response. We will not review them here. Suffice it here to say that

the description of hillslope transport is of great importance (e.g. Rinaldo et al., 1995; Botter

and Rinaldo, 2003). In fact, hillslope residence times are responsible not only for key lags

(and rather complex mechanisms like preferential pathways to runoff) in the overall routing,

but are also important to the understanding of derived transport processes, chiefly solute

generation and transport to runoff waters. The above matter, jointly with the physical problem

of accurately characterizing where channels begin, still needs to be resolved satisfactorily.

In the framework previously depicted, flowrates are obtained by propagating spatially dis-

tributed, time-dependent net rainfall impulses by the use of linear invariant hydrologic re-

sponses. The basic formulation of the geomorphologic theory of the hydrologic response is

thus given by the following convolution integral:

Q(t ) =
∫ t

0
d t0 J (t0)

∑
γ∈Γ

p(γ, t0) fγ(t − t0) (2.40)

In the occurrence of spatially uniform, time varying net rainfall intensity J (t ) one has

Q(t ) =
∫ t

0
d t0 J (t0)

∑
γ∈Γ

p(γ) fγ(t − t0)

=
∫ t

0
d t0 J (t0) f (t − t0) (2.41)

because f (t )=∑
γ∈Γ p(γ) fγ(t ), and we recover the usual GIUH relationship (Gupta et al., 1980)

which is employed in several practical cases. It should be stressed that the general formulation

of Eq. (2.40) uses rainfall patterns in space and time both for determining the path probabilities

p(γ, t ) and for filtering the net contribution J (t ).
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The convolution integrals in Eqs. (2.40) and (2.41) may be solved exactly for a number of cases

(Rinaldo et al., 1991) where the dynamical parameters determining the propagation of the

flood wave are assumed to be uniform. Alternatively, we may allow arbitrary variations in

celerity and hydrodynamic dispersion, and thus numerical convolutions are often in order. In

such cases, arbitrary travel time distributions may be used depending on the hydraulics and

suitable numerical techniques (typically employing integral transforms) are used to accurately

convolute in time. A strong control over the numerical machinery is obviously provided by

continuity, given that
∫ ∞

0 fγ(τ)dτ≡1 ∀γ.

We note that the key identification of the paths γ∈Γmay be done directly from digital terrain

maps, hence exploiting our capabilities of extracting useful geomorphic information from

them and chiefly the extent of the channelized portion of the basin (see e.g. Rodriguez-Iturbe

and Rinaldo, 1997).

From the results of the previous Section, solute mass discharge is given in the following form:

Qs(t ) =
∫ t

0
d t0 J (t0)

∑
γ∈Γ

p(γ, t0)Cγ(t − t0, t0) fγ(t − t0) (2.42)

where Cγ is a “path" resident concentration. In the case of water flow one simply has Cγ=ρ,

the density of water. In this case Qs(t )/ρ becomes a flowrate, Qw [L3/T ], and Eqs. (2.40) and

(2.41) are straightforwardly recovered.

The particular formulation of a mass-response function (MRF) approach depends on the

number and the arrangement of the reacting states. A (relatively) simple case is that of a path

(say γ= x1→... → xΩ, where xΩ denotes, as usual, the terminal reach of the catchment), where

the state x1 generates solute mass to the mobile phase (hence one has mobile and immobile

concentrations in x1 denoted by Cx1 (t ,τ), Nx1 (t )), and all other states (from x2 to xΩ) route the

transported matter without further exchanges. In this case one has in Eq. (2.42):

Cγ(t ,0) fγ(t ) = fx1Cx1 (t ,0)∗ fx2 ∗·· ·∗ fxω (2.43)

In the general case where x1 is a “generation" state (wherein solutes are transferred from

the immobile to the mobile phase) and x2,x3, ..., xΩ are reactive states where the solutes

transported by the carrier may be retarded owing to chemical processes occurring with other

immobile phases (e.g. bed sediment or dead zones that define chemical, biological or physical

reactions), the mass response function may be expressed as:

Cγ(t ,0) fγ(t ) = fx1Cx1 (t ,0)∗ fx2λx2 ∗·· ·∗ fxΩλxΩ (2.44)

where λxi (i = 2,k) represents the gain/loss function within each reactive state forced by a
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non-null input flux concentration of solute C F,i n
xi

(t ) 6=0:

λxi (t − t0, t0) = Cxi (t − t0, t0)

C F,i n
xi

(t0)
(2.45)

Obviously when downstream states route the matter without sorption we have λxi ≡1. The

notation Cxi and λxi should not surprise, as we argued that for each state where gain/loss

processes occur one needs to carry out a global mass balance to determine the instantaneous

fraction of matter stored in immobile phases Nxi (t). We argue that Eq. (2.44) is the general

form of Mass Response Function (MRF) which, in different forms that reduce to particular

cases of Eq. (2.44), has been known for some time (Rinaldo and Marani, 1987).

On this basis alone one needs to weigh carefully the spatial and temporal scales relevant to

a mathematical model of transport at catchment scales. All possible combinations of states

generating, losing or simply routing solutes may thus be explored, thus straightforwardly

extending the geomorphic theory of the hydrologic response to solute transport.

The linkage of travel times with the global, basin-scale contact times between phases control-

ling mass exchanges provides a quantum leap in our operational capabilities of describing

large-scale transport processes. Indeed a complex catchment entails a nested structure of

geomorphic states where the spatial pathways of any rain-driven particle moving through the

network of channel and overland regions define the control volumes for which one needs to

carry out mass balances and compute travel and lifetime distributions.

An example is now presented with the scope of clarifying the structure of spatially explicit

models. The example is kept to a minimum of geomorphic and hydrologic complexity (rainfall

is assumed constant in space, i.e. p(γ, t ) = p(γ)). Figure 2.7 shows the chosen setup, composed

of five source areas and five channels. Overall, the topological order isΩ= 2.

The complete set Γ of paths to the outlet (see Fig. 2.7) is the following:

A1 → c1 → c3 → c5

A2 → c2 → c3 → c5

A3 → c3 → c5

A4 → c4 → c5

A5 → c5

The states where paths originate are labeled by an area Ai , so that the total catchment area

A obeys the relation A=A1+·· ·+A5 and path probabilities are defined by p(1)=A1/A; . . .;

p(5)=A5/A, thereby assuming that the rainfall is spatially uniform – this is tantamount to

assuming that the watershed width is smaller than the correlation scale of rainfall events.
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Figure 2.7: a) Parallel transport. Sample of a relatively simple geomorphological structure of a
river basin and notation for the theoretical models. The basic elements of the MRF approach
for basin scale solute transport are provided. Notice that the set Γ of all possible paths to
the outlet defined by the geomorphic structure is made up by 10 states, five overland states
and five channels (e.g. transitions to overland areas Ai to their outlet channel ci and then to
ensuing transitions (ci → ck →···→ c5) towards the closure – the endpoint of the channel c5).
Notice the treatment of the i -th source area Ai as a well-mixed reactor. Here we assume that
all sources areas A1 to A5 act as generators of solutes to the mobile phase, which emphasizes
their independent roles; b) The set of independent paths available for hydrologic runoff is
enumerated and shown (Rinaldo et al., 2006a).
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Under the circumstances shown in Fig. 2.7, Eqs. (2.38) and (2.43) apply with:

f (t ) = A1

A
f A1 ∗ fc1 ∗ fc3 ∗ fc5 +

A2

A
f A2 ∗ fc2 ∗ fc3 ∗ fc5 + A3

A
f A3 ∗ fc3 ∗ fc5 +

+ A4

A
f A4 ∗ fc4 ∗ fc5 + A5

A
f A5 ∗ fc5

where we have neglected for the sake of simplicity the probability for a particle to land directly

on a channel state).

Note that the transition Ai → ci (i.e. hillslope to channel) entails a subtle issue. In fact, here

it is assumed to describe the overall travel time distribution by a convolution of f Ai (t) and

fci (t ), where f Ai (t ) is the hillslope travel time distribution, regardless of the point where the

channel is reached, and fci (t) is the travel time distribution computed for the total length

of the channel. In reality one should take into account the actual distribution of injections

along the entire channel reach, rather than a fictitious headwater injection. The issue of the

equivalence of the results has been studied (Rinaldo and Rodriguez-Iturbe, 1996).

Figure 2.8a shows the individual and compounded travel time distributions for the path γ1

defined by the transitions: A1→c1→c3→c5. Also shown (Fig. 2.8b) is a comparison of the

path, fγ(t), and the basin, f (t), travel time distributions needed for the general definition

of fluxes. The comparison shows the obvious blending of different arrivals that reflect the

geomorphological complexity of the pathways to the outlet.

Mass response functions are easily determined when parallel generation states occur. If

we assume that every hillslope Ai acts as a generator of solute matter to runoff (a usual

assumption in nonpoint source pollution studies), we have, for the water pulse injected at

t0=0 (i.e. τ=t ):

∑
γ

p(γ)Cγ(t ,0) fγ(t ) = A1

A
f A1C A1 (t ,0)∗ fc1 ∗ fc3 ∗ fc5+

+ A2

A
f A2C A2 (t ,0)∗ fc2 ∗ fc3 ∗ fc5 +

A3

A
f A3C A3 (t ,0)∗ fc3 ∗ fc5

+ A4

A
f A4C A4 (t ,0)∗ fc4 ∗ fc5 +

A5

A
f A5C A5 (t ,0)∗ fc5

which defines the mass-response function for the basin shown in Fig. 2.7. Note that for

a unit pulse of rainfall one has Qs(t)=∑
γ p(γ)Cγ(t ,0) fγ(t) and the flux concentration is

C F (t)=Qs/Qw , while for compounded inputs of rainfall J(t) one has to solve Eq. (2.42). Ex-

amples involving serial and parallel transport of passive or reactive solutes are elsewhere

(Rinaldo et al., 2006b). Every possible combination is thus tackled, and a suitable extension

of the geomorphic theory of the hydrologic response to transport at basin scales is therefore
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Chapter 2. MINERVE and hydrological modeling

Figure 2.8: a) Individual travel time distributions along the path A1 →···→ c5; b) Travel time
distributions fγ1 (t ) obtained by convolution of the individual pdfs, and catchment travel time
distributions f (t ) (Rinaldo et al., 2006a).
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achieved.

In the context of the present thesis, the spatially-explicit model of the hydrologic response

based on the formulation of transport by travel time distributions (Rodriguez-Iturbe and

Valdés, 1979; Gupta et al., 1980; Rodriguez-Iturbe and Rinaldo, 1997) relies on catchment par-

titioning into a series of source areas according to the TAUDEM method mentioned previously

in Section 2.2.1 (Tarboton, 1997). Source areas are delineated based on elevation, aspect and

slope information in order to preserve relatively homogeneous hydrological conditions per

area.

Runoff partitioning of the equivalent precipitation is performed via a minimalist approach

that describes the dynamics of soil moisture at the source catchment scale (Laio et al., 2001;

Rodriguez-Iturbe and Porporato, 2004; Rodriguez-Iturbe et al., 2001). Infiltrated water can

either be transpired by vegetation, percolate towards deeper layers or exfiltrate towards the

channel, producing with the latter mechanism the main contribution to hydrologic response

at the event time-scale. Actual evapotranspiration fluxes at the subcatchment scale are as-

sumed to be null for moisture levels below wilting point, increasing linearly with soil moisture

until potential evapotranspiration is reached at 65 % of the field capacity. Potential evapotran-

spiration is evaluated with the Priestley-Taylor method (Maidment, 1993; Priestley and Taylor,

1972). The amount of mobilized water that travels toward the channel is modeled as a linear

function of the soil moisture. Thus, the water balance for the soil depth can be written as:

ηZr
d s(t )

d t
= FI (t )−E(s(t ))−L(s(t )) (2.46)

where η represents soil porosity (-), Zr is the depth of the active soil layer during water

redistribution processes (mm) and FI is the infiltration flux (m s−1). E and L represent the rate

of evapotranspiration and mobilized water respectively and are functions of the catchment

averaged soil moisture s (m s−1).

Soil depth in the model is considered homogeneous for the source area. For the case study

region (i.e., a subset of the Dranse catchment described in Chapter 5 of this thesis), preliminary

results showed that including spatially variable soil depths in the model does not improve

the hydrological model performance; this has several reasons: there is a limited range of

soil depths in this region (generally between 0 for exposed rocks and about 20-30 cm for

steep slopes), other factors of spatial variability dominate over soil depth heterogeneity (e.g.,

steep, complex topography) and the fact that, as in any conceptual model, the different model

parameters can compensate for each other during model calibration (Nicótina et al., 2011). In

general, this assumption would not fit other regions with more variable soil depths.

The rate of mobilized water in the soil moisture store is given by:

L(s(t )) = Kh s(t ) (2.47)
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where Kh is the hydraulic conductivity (mm h−1). The soil reservoir is fed by the mobilized

water L. Subsurface discharge from this reservoir as well as from the surface flow is defined by

a linear relation with a residence time specific to the type of flow Ksb/sr :

Q(t )sb/sr = Ksb/sr Ssb/sr (t ) (2.48)

where the subscript sb/sr refers respectively to subsurface or surface flows from the storage S.

The total discharge is obtained by convolution of each of the flows (subsurface, surface) from

all subcatchments with a travel time distribution, which is obtained as follows:

1. For each source area Aγ, all possible flow paths to the outlet are identified. Given the

tree-like structure of river networks, for any source area Aγ the transitions states are

uniquely identified (Gupta et al., 1980; Rinaldo et al., 1991);

2. The probability of water entering the flowpath γ is defined proportionally to the relative

rate of instantaneous inflow (Rinaldo et al., 2006a), whether by rain or melt;

3. A travel-time distribution for each flow path is determined through nested convolutions

of the transition states’ probability density functions (pdfs) (Rinaldo et al., 1991) un-

der the general assumption of stationarity of the pdf (Botter et al., 2010; Rinaldo et al.,

2011) which seems reasonably representative of snowmelt-dominated responses typical

of the Visp and Dranse catchments. Unchanneled pathways are assumed to hold an

exponential distribution in analogy with the geomorphic distribution of unchanneled

lengths (Botter and Rinaldo, 2003), while open channel flow in mountain streams is as-

sumed to be reasonably described by the parabolic model implying an inverse Gaussian

distribution (Rinaldo et al., 1991, 2006a; Rodriguez-Iturbe and Rinaldo, 1997).

Mathematically, this translates into the following equations (see Nicótina et al., 2008, for more

detail). The set of all possible paths leading to the outlet Γ reflects the spatial structure of

the input forcing fields (i.e., the equivalent rainfall and/or snowmelt). This is tantamount to

choosing a set of source areas Aγ constrained by continuity i.e.
∑
γ∈Γ Aγ = A where A is the

catchment area. The travel time distribution for the entire catchment, say f (t ), in Equation

2.49 (Gupta et al., 1980; Rinaldo et al., 1991) is given by:

f (t ) = ∑
γ∈Γ

p(γ, t ) fγ(t ) (2.49)

where: pγ is the path probability; and fγ(t ) is the probability density function of travel times

(assumed statistically independent) in either hillslope or channel states, suitably convolved

along any arbitrary path γ from source to outlet. As an example, if the path γ is made up by
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transitions from the source area Aγ to downstream collecting channels c j → ck → ··· → cΩ
(whereΩ is the closure of the catchment), the related travel time distribution is:

fγ(t ) = f Aγ
∗ fc j ∗ fck ∗·· ·∗ fΩ(t ) (2.50)

(where ∗ is the convolution operator) under the reasonable assumption of statistical indepen-

dence of travel times in different states.

Path probabilities, p(γ, t) define the relative proportion of particles injected into a partic-

ular path. They are defined by the spatial distribution of equivalent precipitation over the

catchment according to the relation (Rinaldo et al., 2006a):

p(γ, t ) = J (γ, t )

J (t )
; (2.51)

where J (γ, t ) is the total flux injected through path γ at time t (say, in (t , t +∆t ) where ∆t is the

time step) and J (t ) is the total instantaneous flux over the entire catchment. In practice, one

discretizes time into intervals ∆t as suited to the problem at hand, and computes the total

inflow from snowmelt or rain, and those within each source area. Their relative proportions

define the instantaneous path probabilities.

Flow rates at the basin outlet are evaluated by time convolution of the input flux (equivalent

precipitation or snowmelt) with the residence time distribution related to the respective path,

weighted by the respective path probabilities for the net forcing J (γ, t ):

Q(t ) = ∑
γ∈Γ

∫ t

0
J (γ,τ) fγ(t −τ)dτ (2.52)

Based on comparison with a measured discharge series containing a strong, snowmelt signal,

the basin discharge, calculated in this manner, is used to validate the snowmelt methods in

Chapter 5 of this thesis.

2.6 Conclusions

The RSII and spatially-explicit hydrological models as well as the measured and COSMO reanal-

ysis inputs provide a means to confirm the suitability of the input and process improvements

for the MINERVE operational flood forecasting model. This is accomplished in the subsequent

chapters of this thesis as follows: In Chapter 3, both the measured and COSMO inputs along

with the RSII hydrological model are used to test interpolation methods in terms of generating

reliable, spatially distributed modeling inputs. In Chapter 4, using COSMO output as input,

the RSII model tests an approach to re-define the snowfall limit. Chapter 5 of this thesis uses
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the spatially-explicit hydrological model described in Section 2.5 as an integrator to assess the

performances of snowmelt models in terms of catchment-scale hydrology. By testing these

methods in RSII or in the spatially-explicit model, input and process error is demonstrated

to be reduced in the MINERVE model with the uncertainty analysis technique developed in

Chapter 6.
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Chapter 3
Improved interpolation of

meteorological forcings

Geostatistics is [...] used to model the

uncertainty of unknown values through

the generation of alternative images

(realizations) that all honor the data and

reproduce aspects of the patterns of

spatial dependence [...].

Pierre Goovaerts, Author ‘Geostatistics

for Natural Resources Evaluation’

3.1 Introduction

To optimize water resources management for flood forecasting and hydropower operation

purposes, it is crucial to have accurate estimates of meteorological forcings in space and

time, particularly in Alpine terrain. However, within complex topography the characteristic

spatial scales of hydrological forcings are typically, poorly captured even with a relatively dense

network of measurements (Frei and Schär, 1998; Griffiths and McSaveny, 1983; Katzfey, 1995;

Wratt et al., 2000, 1996). Moreover, topography impacts rainfall and snowfall patterns through

the so-called orographic and shadowing effects as described in Chapter 1 of this thesis Section

1.1.1.

Due to orographic effects and weather patterns, there is on-going research as to whether

precipitation, in general, increases with elevation. For instance, precipitation accumulation

trends can show considerable scatter with altitude depending on the region’s exposure to

wind and synoptic situations (Sevruk, 1997). Also, unreliable data in complex terrain at high
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altitudes has also led to estimate biases as large as 25% where snow accumulates (Groisman

and Legates, 1994). Furthermore, depending upon the predominant wind direction, rain

shadows can be created when more precipitation is deposited at or near the crest and much

less precipitation is deposited at lower elevations (Sinclair et al., 1997).

In the particular case of the European Alps, an analysis of long-term rainfall records demon-

strated that maximum precipitation rates are observed on both the upper southern and

northern faces (Frei and Schär, 1998). Regression analyses of corrected annual precipitation

versus altitude in the Swiss Alps have also shown that in the upper reaches of the Rhone

River valley (i.e., the Valais), between 90 and 100% of precipitation variability is explained by

altitude with greater precipitation rates found at higher elevations (Sevruk, 1997). Further-

more, a climatological study (Attinger and Fallot, 2003) indicated that since 1975 over half

of meteorological situations which have produced more than 100 mm/day of precipitation

over three days in the upper Valais have originated in the south; these southerly events have

deposited abundant precipitation on the upper windward and leeward sides of mountains.

With southerly storms, precipitation in the Valais shows significant patterns on leeward sides

where precipitation is effectively funneled into lower elevation areas due to shielding patterns

created by adjacent high elevation mountains (e.g., the Matterhorn at 4500 m) (Petrascheck

and Hegg, 2002).

In spite of a long-term knowledge on regional weather and precipitation accumulation pat-

terns in the Swiss Alps, a non-exhaustive sampling of rainfall with few gauges located at high

altitudes is unable to effectively capture short-term, catchment-scale, orographic effects dur-

ing flood events (when the steep slopes and relatively shallow groundwater depths typical of

Alpine areas generate short response times) (Petrascheck, 1996). A sparse rain gauge network

at upper elevations necessitates a proper quantification of the local precipitation-elevation

relationship using an extended description of topography (Frei and Schär, 1998). Moreover,

the inability of correctly reproducing areal rainfall leads to notable failures of the ensuing

models of the hydrologic response, which are sensitive to input volumes at the catchment

scale (Nicótina et al., 2008). At reduced subcatchment scales, rainfall variability also has

an important impact on peak flows (Mandapaka et al., 2009). Furthermore, a limited num-

ber of temperature stations in the region does not allow proper definitions of snow/rainfall

partitioning during flood events. Accurate temperature fields are particularly important in

mountainous regions because the combination of high temperatures producing snow/glacial

melt or rain-on-snow processes can accelerate discharge production (Benestad and Haugen,

2007; Jasper et al., 2002; Sui and Koehler, 2001).

Several interpolation methods have been used in literature to reproduce the spatial distri-

bution of temperature and rainfall fields based on sparse ground measurements (Goovaerts,

2000; Daly, 2006). Non-geostatistical techniques including IDW, splines and linear regression

have been tested in numerous studies (e.g., Hancock and Hutchinson, 2006; Kurtzman and

Kadmon, 1999). Although IDW is a relatively simple deterministic interpolation method which

provides adaptable weights for sensible local interpolations, the choice of the weighting func-
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tion is arbitrary and no measure of error is provided (Webster and Oliver, 2001). Particularly

important to this study, IDW cannot explicitly account for climatic forcing particularly when

elevation extrapolation is needed (Daly, 2006). Furthermore, single regression functions do

not accurately represent spatially varying meteorological variables across large regions (Daly,

2006) and multiple regression models can become complicated and tend to over-extrapolate

(Kurtzman and Kadmon, 1999).

To overcome such limitations, more studies are testing geostatistical tools to interpolate both

rainfall and temperature data (Hudson and Wackernagel, 1994; Kravchenko, 1996; Dubois,

1997; Prudhomme and Reed, 1999; Goovaerts, 2000; Buytaert et al., 2006; Skoien and Bloschl,

2008). In the Swiss topographic context, previous studies have compared various precipitation

interpolation schemes on a daily scale (e.g., kriging, splines, neural networks) (Dubois, 1997).

With specific reference to flood events, KED with rainfall data and radar as an external drift

factor has proven successful in interpolating hourly precipitation during a 2002 flood in

Germany with improved rainfall predictions compared to IDW, Thiessen polygons, nearest

neighbor, ordinary and indicator kriging estimations (Haberlandt, 2007). KED with radar was

also successful in improving precipitation interpolations when automatically computing 2-D

spatial correlograms for short term rainfall events (Velasco-Forero et al., 2008).

In this chapter, comparative analyses of various interpolators are addressed to test whether

there exists a suitable procedure for interpolating hourly point measurements in the Valais re-

gion of the Swiss Alps which effectively captures orographic effects and accurately reproduces

time-varying temperature lapse rates during flood events. With specific reference to the predic-

tion of floods, emphasis is given on properly estimating total instantaneous volumes of rainfall

on a catchment scale regardless of the rainfall-runoff tool employed. In specific catchments of

this region, poor predictions with a hydrological model implementing IDW have resulted in

gross underestimations of runoff volumes (Jordan et al., 2008). Unlike other kriging studies

which have incorporated radar data (Krajewski, 1987; Haberlandt, 2007; Velasco-Forero et al.,

2008; Sangati et al., 2009), this region cannot use radar estimates because the Valais mountains

effectively block the radar beam at lower elevation angles (Germann et al., 2006) and only

precipitation above the mountains can be seen by the radars. Due to the vertical variability

of precipitation, this can lead to significant discrepancies with precipitation at ground level

(Joss et al., 1997; Berne et al., 2004; Garcia Hernández et al., 2009b). As a consequence, the

aim of this study is to establish suitable and utilitarian procedures for improved prediction of

catchment-scale precipitation volumes and temperature distributions to improve hydrological

model performance with limited data available. Compared to previous studies, three major

aspects characterize the novelty of this work: i) the comparison of time-varying and constant

temperature lapse rates on an hourly scale for flood analysis in complex Alpine terrain; ii)

the use of digital elevation data as well as numerical weather forecasts as sources of external

information for KED; and iii) the hydrologically-oriented evaluation of the results in terms of

their impact on the predictive capability of the RSII model.
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3.2 Materials and methods

3.2.1 Study region and data

The analyses described herein refer to the Visp and Dranse catchments in the Valais region

of Switzerland described in Chapter 2 Section 2.2. These catchments, the DTM, and the

meteorological stations used in this analysis are depicted in Figure 3.1.
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Figure 3.1: Map of Valais region indicating catchment delineations and locations of all temper-
ature (T) and precipitation (P) gauges used. ’New gauges’ refers to the additional gauges built
after 1993. A background shaded DTM (elevation indicated by the grey-scale color bar) and
the river network are also indicated. Source: (MeteoSwiss). The COSMO7 grid is also shown.
Source: (COSMO, 2011).

Floods in the Valais are typically associated with storm patterns which originate from the south

that are caused by a depression over central Europe (Roe, 2005). Prevailing wind directions

during storms were evaluated through radio sounding data taken at 500 hPa from the stations

in Payerne, Switzerland and Milan, Italy (DAS, 2009). These stations are situated to the west

and to the southeast of the study region respectively. Two extreme flood events in the Valais

are analyzed in this Chapter: 23 - 26 September 1993 (72 h); and 13 - 16 October 2000 (72 h); in

addition to the most recent flood event, 24 May - 1 June 2008 (192 h). Measured discharges

for these three flood events in the Visp are shown in Figure 3.2. Hourly precipitation and

temperature records over the Valais collected by MeteoSwiss and WSL (the Swiss Federal
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Table 3.1: Minimum, maximum and mean precipitation (mm/hr) and temperature (◦C) statis-
tics during the 1993, 2000, and 2008 flood events in the Valais.

Precipitation Statistics (mm h−1)
1993 2000 2008

Minimum 0.0 0.0 0.0
Maximum 50.0 29.3 21.2
Mean 1.4 1.9 1.1

Temperature Statistics ◦C
1993 2000 2008

Minimum 2 −3 −5
Maximum 26 19 24
Mean 12 5 6

Institute for Forest, Snow and Landscape Research) were used in this analysis after initial

filtering of outliers (Figure 3.1). As an example, mean time series of measured rainfall rates

and temperature from all station data within the Valais are shown in Figures 3.3a) and 3.3c)

for the 1993 storm. Precipitation and temperature statistics for all events across the Valais are

summarized in Table 3.1.
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Figure 3.2: Measured discharge at the outlet of the Visp catchment during the three case study
flood events. Source: (FOEN, 2008)

Numerical weather forecast reanalysis data from COSMO7 are used as an additional infor-

mation source. The COSMO7 model is described in detail in Chapter 2 Section 2.3.2 of this

thesis.

Composite COSMO7 data sets for this analysis were constructed by using the first 12 hours

of each forecast after a six hour initialization period. The integration of the COSMO7 grid

with the more detailed topography (upscaled to 500 m × 500 m resolution for computational

needs) was performed according to procedures defined by MeteoSwiss (Kaufmann, 2008).

Figures 3.3b) and 3.3c) show the histogram of COSMO7 mean rainfall rates and mean COSMO7

temperature over the Valais for the 1993 event respectively. The COSMO7 temperature profile
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Figure 3.3: Mean precipitation or temperature across the Valais: a) 1993 mean measured
precipitation intensity, b) 1993 mean precipitation intensity forecasted by COSMO7, c) 1993
mean measured and COSMO7 forecasted temperatures. Differences in temperatures are due
to the fact that the average elevation of the COSMO7 grid points is located 400 m above the
average measurement station elevation. Sources: COSMO2011,MeteoSwiss
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differs from the measured by approximately 2 ◦C because the average elevation of the COSMO7

grid points of the virtual terrain which correspond to the temperature gauges is 400 m above

the station elevations.

3.2.2 Spatial interpolation methods

The interpolation methods analyzed herein include Shepard’s Inverse Distance Weighting

(IDW), Ordinary Kriging (OK) and Kriging with External Drift (KED). IDW is a deterministic

method which estimates the interpolated values by a weighted mean of the data where the

weights are inversely proportional to the distance to a power (typically squared) between

the interpolated value and each data point (Isaaks and Srivastava, 1989). In contrast, kriging

methods consist of a family of least-square linear regression algorithms used to estimate

a random field from which measured data are considered to be drawn as a sampling of a

field realization (Goovaerts, 1997). Numerous versions of kriging exist which vary in the

assumptions that define their relative system of equations (e.g. simple, ordinary, universal).

All kriging methods represent optimal linear statistical estimators in that they are unbiased

and minimize error variances (Goovaerts, 1997; Isaaks and Srivastava, 1989).

OK accounts for local fluctuations of the mean value of the random field at hand over a suitably

defined moving window by assuming stationarity in each search neighborhood (Cressie, 1988).

KED, on the other hand, performs the prediction of sparse variables or variables poorly

correlated in space by considering that there is a local trend within the neighborhood; primary

data is assumed to have a linear relation with the auxiliary information exhaustively sampled

over the Valais (Ahmed and de Marsily, 1987; Goovaerts, 1997).

Also, particular to this analysis, kriging computations rely on an unbiased (i.e. free of system-

atic error) and robust (i.e. the estimator is stable with respect to the number of data points

used for the analysis) semivariogram estimator to determine the spatial correlation structure

of the forcing field (Li and Lake, 1994). This estimator has been proven to outperform other

semivariogram estimators (e.g. Matheron’s semivariogram (Matheron, 1970) and Cressie’s

estimator (Cressie, 1984)) and to be resistant to outliers and contaminated data (Li and Lake,

1994).

(Li and Lake, 1994) define their moving window semivariogram estimator as:

γN 2(h) = γN 1(h)+ h

d
γ′N 1(h) (3.1)

where h is the lag distance, d is the dimension in Euclidean space and γ′N 1(h) is the derivative

of γN 1(h) with respect to h. Here the derivative is approximated with a forward difference

method, although the choice of the numerical differentiation scheme is largely immaterial.
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γN 1(h) is defined as:

γN 1(h) = 1

n

n∑
i=1

1

2m

∑
j∈Di ,h

[Z (xi )−Z (x j )]2 (3.2)

where the first sum is extended over the number of data values in the entire field n. The second

sum is extended over the set of data values Di ,h in a moving window of size h centered at point

i where m is the number of data values in Di ,h including the points j and i located inside the

window.

Figure 3.4 shows a comparison between the Matheron, Cressie and Li-Lake variograms. All

estimators are unbiased whereas only the Cressie and Li-Lake variograms are considered

robust. This plot shows that the main advantage of the new semivariogram estimator lies in

its proven stability at higher lag distances compared to the other estimators. This is due to

the fact that the new estimator uses the whole data set at every lag distance, providing in this

way more robust statistics (Li and Lake, 1994). It has been noted however that the second

term on the right-hand side of Eq. 3.1 introduces, for short lag-distances, a departure of the

Li-Lake semivariogram estimator from the Matheron estimator. This departure is likely to be a

consequence of the precision of the numerical derivative and further analyses will be needed

to clarify this issue that remains behind the scope of the present paper. Suffice it here to notice

that given the sparsity of the data points, semivariogram identification would not be possible

if the variogram evaluation was performed with the Matheron estimator. The robustness and

resilience properties allows the estimator to perform better in the presence of limited and

irregularly distributed data points, which is the present case within the Valais region of the

Swiss Alps.

The relatively invariant spatial structure of the sampled rainfall and temperature fields through-

out the storm events at hand allows the use of the storm-averaged semivariogram to properly

characterize spatial correlations (Haberlandt, 2007). All precipitation values are considered

for variogram inference and kriging. Considering that only flood cases are analyzed in this

study, areas without rain or with intermittent rainfall are very limited so that precipitation

probability distributions are less positively skewed than those which can be obtained during

less intense rainfall events.

3.2.3 Hydrological model

Hydrological computations are based on the RSII model described in Chapter 2 Section 2.4 of

this thesis.

3.2.4 Interpolation details

Preliminary linear regression analyses showed a clear linear trend between elevation and

precipitation in catchments as previously indicated by (Sevruk, 1997) and an even more
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Figure 3.4: Comparison of variogram estimators for the 1993 flood event: Matheron versus
Cressie and Li and Lake. Major (top) and minor (bottom) anisotropic variograms are shown
along with the number of points pairs used in each estimate.
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apparent linear trend between elevation and temperature. Given the random field Z (x) (hourly

precipitation or temperature in the application at hand), with x the vector representing the

position in the 2D plane, the expectation (E) of the random variable is:

E[Z (x)] = a+bS(x) (3.3)

where S(x) represents the local elevation at location x. The residuals of this relation at the

measurement stations are used to define the semivariograms in KED. Similar preliminary

linear regression analyses showed that temperature measurements were found to be strongly

correlated with the closest COSMO7 grid point at an hourly time step. In contrast, for precipi-

tation, measurements and COSMO7 reanalyses showed the strongest linear correlation with

cumulative data over the event. Thus, precipitation interpolation uses event averaged linear

drift whereas hourly COSMO7 reanalyses are used as the external drift factor for temperature

interpolations.

Interpolation computations and post-processing are conducted on a 500 m × 500 m resolution

grid with an hourly time-step using the R GSTAT geostatistical software (Pebesma, 2004).

In all interpolation methods, the measurement errors at the meteorological stations are

assumed to be negligible. This assumption does not consider that wind at high altitude

regions greatly decreases the accuracy of snow accumulation in rain gauges. Sevruk (1985)

has made estimates of the mean annual bias for rain-gauges in Switzerland. By such estimate,

a systematic undercatch of 10% in the summer is common for rain gauges in Switzerland

in wind-exposed sites, especially at high elevations. Correction of gauge measurements for

systematic snowfall undercatch has not been performed and is beyond the scope of our

analysis.

Interpolated fields are provided as inputs to the hydrological model by assigning to each

subcatchment (within a proper size range) the precipitation time series estimated at its

centroid. The temperature time series at the median of the elevation bands derived with

KED are assigned to each elevation band within a subcatchment. In contrast, for temperature

interpolations with OK and IDW, time-varying lapse rates are estimated from station data

through linear regression. Hourly temperature data are subsequently de-trended to perform

interpolations. Final temperature fields are ultimately calculated, for both IDW and OK by

redistributing the interpolated fields according to local elevation and time-varying lapse rates

derived from data.

The performance of the interpolation methods is analyzed via cross validation conducted

using the GSTAT package (Pebesma, 2004). Two statistical measures of accuracy are used to

validate the interpolation results: 1) Mean Bias and 2) Root Mean Square Error, RMSE. The

Mean Bias is defined as the mean of the differences between predictions and observations. It

defines the tendency of the method towards over or under-prediction. In addition, for kriging

methods, standardized errors (i.e. the residuals of predictions and observations normalized

by their respective variances) are compared.
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To test the different interpolation methods from an hydrologically relevant viewpoint, the

RSII model (described in Chapter 2 Section 2.4) was run with IDW and kriging rainfall and

temperature estimations. The test was carried out on the 1993 flood event for which the

model had been previously calibrated (Jordan, 2007; Jordan et al., 2008). All methods are

compared relative to the current (base case) IDW method based on a constant lapse rate (i.e.,

the method used in calibration and in use currently for the operational version of the model).

The calibrated model is assumed to well represent the actual functioning of the catchment,

allowing the assessment on the different interpolation techniques. To focus on the impact of

input fields, this study assumes that better reproduction of discharge volumes can be made by

simply changing the spatial distribution of the hydro-meteorological interpolations. Therefore

it is important to note that although this model was calibrated for input fields generated

by IDW, it is assumed that further calibration with other input fields which provide more

appropriate volumes would undoubtedly yield improved results.

3.3 Results and discussion

3.3.1 Variogram estimates

Experimental variograms are fitted with the exponential model as meteorological fields typ-

ically exhibit the type of short-range variability that can be best described by this model

(Goovaerts, 1999). Variogram analysis (see Figure 3.5b as a representative example for the 2000

storm event) shows a clear identification of range and sill. Consistent anisotropy patterns

are identified for all examined storm events, for both precipitation and temperature. Rain-

fall variograms exhibit a principal direction of anisotropy (south-east) that corresponds to

the prevailing wind direction at 500 hPa detailed by the radio sounding data. Anisotropy is

geometric (i.e. the sill remains relatively constant regardless of the direction), while no zonal

anisotropy (i.e. different correlation structures in different directions) is detected. In contrast,

spatial correlation structure of temperature data does not show significant anisotropy.

Rainfall fields obtained through anisotropic variograms have proven to well reproduce the

spatial correlation structure of rainfall as shown by comparison with previous studies in

the Swiss Alps (Petrascheck and Hegg, 2002). In contrast, isotropic variograms and relative

interpolated rainfall fields (not shown here for brevity) did not confirm such detailed studies.

Here, anisotropic variogram estimators are used in the present analysis.

3.3.2 Precipitation interpolation

The analysis of precipitation interpolations compares IDW with geostatistical methods (OK,

KED with elevation as the external drift and KED with COSMO7 reanalyses as the drift). Figure

3.6 shows, for each interpolation method, the cumulative precipitation maps for the 2008

event (this event being representative of the general behavior during the other flood events

examined). Visual inspection of Figure 3.6 chiefly stresses the advantages of geostatistical
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Figure 3.5: Average anisotropic variograms for precipitation during the 2000 event: a) minor
axis at 70 degrees from north b) principal direction showing prevailing wind direction at 160
degrees from north. The anisotropy ratio was found to be 0.5.

methods (panels b-d) with respect to IDW (panel a). IDW interpolations suffer the appearance

of the so called ’bull’s eyes’ effect around the measurement points. This effect could be reduced

with a suitable exponent for the inverse of the distance between the estimation point and the

measurement stations, a proxy for the correlation length of rainfall. Accounting for the spatial

structure of rainfall, as estimated from available data, geostatistical methods partially avoid

this problem. Maximum cumulative precipitation is recorded on the south-eastern boundary

of the watershed (i.e. the Simplon alpine pass). Figure 3.6d shows that using COSMO7

reanalyses as the external drift factor produces pixels with higher precipitation volumes along

this border of the watershed, as compared to other methods. In fact, some pixels show two

times the cumulated precipitation recorded by stations within that pixel. Most notably, by

using geostatistical methods, the anisotropic structure of the rainfall field in agreement with

the predominant synoptic scale wind direction emerges from the geostatistical methods. The

resulting spatial patterns of rainfall are compatible with more detailed studies carried out in

the Swiss Alps (Petrascheck and Hegg, 2002), reinforcing the choice of anisotropic variograms

for the description of the spatial correlation structure of rainfall in the study case at hand.

Daily mean precipitation values calculated by averaging the various predictions in the Visp

and the Dranse catchments are shown in Table 3.2. Foremost, the results show that IDW inter-

polation produces the lowest mean precipitation values except in cases where the COSMO7

reanalyses seemingly under predict rainfall relative to the other methods based on ground

measurements. As such, it is apparent that kriging with COSMO7 as an auxiliary variable

is highly dependent upon the quality of the forecast. Furthermore, the mean precipitation

intensities indicate that the volumes generated with OK and KED are consistently greater than

IDW.

To further analyze the interpolation methods quantitatively, cross validation performances are

compared in Figures 3.7 through 3.8 and in Table 3.3. As shown by sample histograms in Figure
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c) KED elev d) KED COSMO7

(      )a) IDW b) OK

Figure 3.6: Cumulative precipitation (mm) over the 2008 event with the different interpolation
methods: a) IDW b) OK c) KED with elevation and d) KED with COSMO7. Mean precipitation
for OK, KED with elevation and KED with COSMO7 are respectively +9%, +16%, and +29%
with respect to IDW mean precipitation predictions.

Table 3.2: Mean daily rain intensities (mm day−1) during the 1993, 2000, and 2008 flood events
in the Visp and the Dranse.

Visp Dranse
1993 2000 2008 1993 2000 2008

IDW 44.3 67.9 10.9 22.6 48.0 4.7
OK iso 45.1 72.8 12.9 23.9 50.4 5.4
OK aniso 49.6 74.4 13.0 23.9 53.0 5.6
KED elev 47.2 96.7 13.4 23.2 68.0 6.5
KED COSMO7 36.7 61.4 12.7 25.5 56.6 11.3
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3.7, the mean residuals for all methods are distributed symmetrically with a single peak. To

indicate a good predictive model within the context of kriging, the cross-validation residuals

should have a normal distribution (Isaaks and Srivastava, 1989). The following results thereby

imply that the variogram models are relatively accurate for all kriging methods.
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Figure 3.7: Histogram of residuals for all precipitation kriging methods for the 2008 event: a)
OK b) KED with elevation c) KED with COSMO7. Residuals for the 1993 and 2000 events are
similarly symmetric and single-peak.

Furthermore, cross validation results evaluated in Figure 3.8 compare the Mean Bias for all

stations in the study area (Figure 3.8a) and for the stations located above 1500 m asl (Figure

3.8b). An analysis of interpolation validation at high elevations is important in order to

investigate the performances of different methods in the presence of complex topography and

at elevations at which most of the catchment is located. In fact, 83 and 90 % of the area within

the Dranse and the Visp, respectively, is found to be above 1500 m asl. Figure 3.8a shows that,

with a few exceptions, KED with elevation produces the least biased predictions of observed

rainfall whereas IDW tends to overestimate precipitation, particularly for the 2008 event. The

general overestimation of precipitation for stations above 1500 m for the 2008 event (Figure

3.8b, dark red bars) suggests some inadequacy of the rain gauge network active during this

event in that portion of the catchment. Even in this latter case, however, KED with elevation

as the external drift factor produces less biased estimates as compared to the other methods.

In contrast, the RMSE results (Table 3.3) are not as conclusive as the mean bias results. For all

flood events, OK and KED had similar RMSE values. Overall, IDW produces the largest errors

for all events.

Figure 3.9 details cross-validation results in terms of the distribution of standardized errors

(SE) for geostatistical methods during the 2008 event. Median errors (indicated by the thick

black line within the boxes) are negligible for all kriging methods. The spread above and below

the median in each box shows the 25 and 75 % quantiles while the bottom and top whiskers

indicate the 10 and 90 % quantiles respectively. Ordinary kriging shows the widest distribution

and errors. Conversely, KED with elevation shows the smallest box spread while KED with

COSMO7 shows the smallest error distribution range considering the 10 and 90 % quantiles.
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Figure 3.8: Mean Bias for all precipitation interpolation methods for all events (white diagonal
patterns indicate negative biases): a) all stations b) stations above 1500 m asl.

Table 3.3: RMSE for all interpolation methods for all events (left) all stations (right) stations
above 1500 m.

RMSE All Stations RMSE Stations > 1500m
1993 2000 2008 1993 2000 2008

IDW 2.3 2.0 2.1 2.4 2.4 2.3
OK aniso 2.2 1.9 2.2 2.1 2.0 2.1
KED elev 2.2 1.9 2.2 2.1 2.0 2.2
KED COSMO7 2.2 1.9 2.1 2.3 2.4 2.1
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Figure 3.9: Standardized errors (SE) for the precipitation kriging methods during the 2008
event. The median of the distribution of the SEs for each method is shown by the black lines
within the boxes while the upper and lower 25% quantiles are the top and bottom values of
the boxes respectively. The whiskers extend above to the 90% quantile and below to the 10%
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3.3.3 Temperature interpolation

Accurate mapping of temperatures is crucial to accurately describe snow/rainfall partitioning

and melting processes and thus model hydrologic response in alpine watersheds. Figure

3.10 compares the different temperature interpolation techniques in terms of maps of mean

temperature over the entire event for the 2008 case (used here as a representative example for

the other studied events). Here, time-varying temperature lapse rates were directly derived

from hourly ground measurements for IDW and OK interpolations (Figure 3.10a-b), while for

elevation and COSMO7 driven KED (Figure 3.10c-d) the vertical dependance of temperature

from topography is embedded in the method either directly (KED with elevation) or indirectly

through the weather forecast model (KED with COSMO7). In the former case, temperature

differences between valleys and hilltops appear to be stronger as compared to the latter case

(KED interpolations). Also Figure 3.10d suggests that the coarse resolution of the weather

forecast grid (6.6 km × 6.6 km) does not resolve the detailed features of this complex topog-

raphy needed to represent temperature fields. An effective use of numerical temperature

forecasts would thus require data downscaling techniques to reproduce the characteristic

patterns better approximated by the other interpolation methods.

Statistically, the cross validation results for temperature show that kriging with elevation as the

external drift provides the overall smallest bias and error in terms of the Mean Bias (Figures

3.11a and 3.11b) and RMSE (Figures 3.11c and 3.11d) for all events including stations above

1500 m (Figures 3.11b) and 3.11d)) respectively. This ensemble of cross validation results
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d) KED with COSMO7. Differences in mean temperatures for OK, KED with elevation and KED
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strongly suggests the need for temperature interpolation to include elevation as an auxiliary

variable.
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Figure 3.11: Mean Bias and errors of temperature predictions for all interpolation methods
for all events: a) Mean Bias for all stations (white diagonal patterns indicate negative biases)
b)Mean Bias for stations above 1500 m (white diagonal patterns indicate negative biases) c)
RMSE for all stations d) RMSE for stations above 1500 m asl.

Mean interpolated temperature time series in the Visp are shown in Figures 3.12a and 3.12b

for the 1993 and 2000 flood events respectively. In general, KED with elevation provides higher

mean temperatures over the course of both storm events. Also, the KED time series for the

1993 flood event (Figure 3.12a) is in best agreement with the measured temperature time

series for 1993 as shown in Figure 3.3c. The discrepancy in temperatures is explained by the

fact that for this event, measurement stations did not extend above 2470 m asl, so the mean

measured temperatures are much higher.

By comparing the mean interpolated temperature and mean measured precipitation time
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Figure 3.12: Comparison of precipitation and temperature time series with lapse rates derived
from station data (λ): a) 1993 mean estimated temperature time series (◦C) in Visp b) 2000
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series profiles in the Visp catchment for 1993 (Figures 3.12a and 3.12c respectively), it is also

clear that during periods of maximum precipitation intensity and an increase in temperature

(seen at hour 60) there is no corresponding change in temperature found through KED with

COSMO7 predictions. The COSMO7 reanalyses do not consistently correspond to meteorolog-

ical trends presumably because they cannot resolve subgrid phenomena due to a relatively

coarse resolution. In the case of the Swiss Alps, the effect of grid resolution can be quite

dramatic. Indeed, a COSMO forecast model grid point that provides an areal average over a

measurement station can differ by more than 1 km in elevation. Furthermore, the COSMO7

model is limited to interpolations up to 3200 m asl.

The time-variant lapse rates derived from data show gradients for the 2000 event (Figure 3.12d)

in the Visp catchment that are never below -6.5 ◦C / 1000 m and range between -2.5 and -6.0 ◦C

/ 1000 m. This provides evidence that, for flood modeling, even seasonally-derived constant

lapse rates will be unable to capture the dynamics of temperature changes during an event.

As the data suggests, lapse rates exhibit considerably large ranges in mountainous regions.

Measured lapse rates in complex topography have been reported to range between -3 and -7
◦C / 1000 m (Blandford et al., 2008). Also, -6.5 ◦C / 1000 m, the constant lapse rate value noted

in an observed standard atmospheric profile, has been refuted as inaccurate as a constant

gradient in space and time in other complex terrain studies due to the effects of large scale

advection and diurnal wind patterns (Rolland, 2003; Minder et al., 2010). In effect, typical

constant lapse rates would undoubtedly generate inaccurate forcings for flood forecasting

models.

3.3.4 Effect of interpolation techniques on runoff predictions

All interpolated fields have been incorporated into the RSII model (Chapter 2 Section 2.4) for

the flood event of 1993 (one of the most severe flood events ever-recorded in the Visp catch-

ment). Results of the hydrologic model are summarized in three experiments. In Experiment I,

the temperature and precipitation fields are introduced so that the same interpolation method

is used to generate both meteorological fields (Figure 3.13a). The IDW base case which uses a

constant lapse rate is plotted in the first plot for comparison. In Experiment II, the IDW and

kriged precipitation fields are introduced with the same temperature field generated by KED

with elevation (as this method shows the best cross validation results) (Figure 3.13b). Similarly,

in Experiment III the IDW and kriged temperature fields are introduced with the same pre-

cipitation field generated by KED with elevation (Figure 3.13c). In all cases, the original 1993

calibration parameters, obtained with the IDW base case inputs, are left untouched and initial

conditions are unchanged.

Results from Experiment I indicate that KED with elevation clearly generates more volume

during the event. IDW and OK with variable lapse rates also generate more volume. However,

the IDW and OK volumes are not sufficient to capture the discharge peak. Most significantly, it

is quite evident that the base case of using IDW with a constant lapse rate within the Visp does

66



3.3. Results and discussion

0

50

100

150

200

250

300

350

time (h)

0

50

100

150

200

250

300

350

time (h)

0

50

100

150

200

250

300

350

time (h)

a) Experiment I b) Experiment II c) Experiment III
measured

IDW base

IDW vary

OK vary

KEDelev

KEDCOS7

50 100 1500 50 100 150050 100 1500

di
sc

ha
rg

e 
(m

3
/s

)

Figure 3.13: RSII discharges over the 1993 event: a) all precipitation and temperature interpola-
tion methods versus measured and IDW base case, b) all precipitation interpolation methods
with KED with elevation derived temperature, c) all temperature interpolation methods with
KED with elevation derived precipitation.

not allow for sufficient volume to be generated (Figure 3.13a). Similarly, the precipitation and

temperature fields found through KED with COSMO7 generate volumes and peaks in least

agreement with measured discharge data.

In Experiment II, the effect of changing only the precipitation fields shows that the choice

of the precipitation interpolation method has lesser impact. KED and OK for precipitation

generate the volume and peak most similar to those of the measured discharge data. In con-

trast, precipitation fields generated by IDW or KED with COSMO7 are less in agreement with

measured data. These results correspond with the daily precipitation intensities calculated in

Table 3.3.

In Experiment III, the major effect induced by changing solely the temperature field is quite

apparent. With the precipitation field generated by KED with elevation and the temperature

predictions produced by IDW or kriging, the temperature fields provided by KED with elevation

clearly capture the largest discharges at the peak of the storm. OK and IDW temperature fields

show similar results where less volume is generated presumably due to the lower mean

temperatures over the course of the event. Similarly, the temperature field generated by KED

with COSMO7 does not provide sufficient volume such as in Experiment I.

The increase in volume can be explained by Figure 3.12 which shows that mean temperatures

estimated by IDW, OK and particularly KED COS7 are below 2 ◦C. In the RSII model, the critical

temperature range is given between 0 and 2 ◦C which defines that any precipitation above 2 ◦C

is definitively rain. In contrast, mean temperatures generated by KED with elevation are more

frequently above or near 2 ◦C prompting rainfall responses rather than snowfall accumulation.

To quantify the hydrologic effect of the different interpolation techniques, runoff volumes

rather than measures of model performance based on local error such as the Nash-Sutcliffe
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Table 3.4: Specific runoff volumes (m) during the 1993 event at Visp: Measured and IDW base
case volumes are first listed. Below, the left column refers to Experiment I, the center column
refers to Experiment II and the right column refers to Experiment III.

Specific Runoff Volumes (m)
Measured 5.5
IDW (base case)a 4.6

Experiment Ib Experiment IIc Experiment IIId

IDW 5.2 5.3 6.0
OK aniso 6.1 6.7 6.1
KED elev 6.0 6.0 6.0
KED COSMO7 4.6 5.1 5.4
a IDW with constant lapse rate used for temperature interpolations
b All temperature and all precipitation interpolation methods
c Constant KED with elevation derived temperatures with all precip-

itation interpolation methods
d Constant KED with elevation derived precipitation with all tem-

perature interpolation methods

index (Nash and Sutcliffe, 1970) are used. Table 3.4 indicates that hydrologic simulations run

with KED-interpolated input fields significantly improve results in terms of specific runoff

volume; previous runoff underestimations are resolved by using inputs which can capture

flood volumes and peaks. The fact that the hydrologic model was not calibrated for the KED

with elevation input fields, which produce the best match with the measured data, reinforces

the conclusion that detailed spatial interpolation tools are needed to catch the prominent

characters of the hydrologic response.

3.4 Conclusions

Based on the results, kriging can be used effectively to estimate precipitation and temperature

fields in complex, alpine topography during flood events. Conclusions from this study include

the following:

• Variogram analysis shows that significant anisotropy (induced by dominant wind and

orographic patterns) is detected in field data and its effect thus needs to be accounted for

in spatial interpolation. Cross validation residuals for precipitation showing a symmet-

ric, single-peak distribution suggest the reliability of the variogram and interpolation

techniques;

• Comparative analyses of the different interpolation techniques suggest that geostatis-

tical methods perform better than IDW. In particular, KED with elevation as auxiliary
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information gives the overall best validation statistics for the considered set of events

and, notably, it does so for the 2008 event which includes all stations within the current

monitoring network. This conclusion is further strengthened by the definitive best

performance results associated with KED with elevation for temperature interpolations.

The comparison of data- versus KED- derived lapse rates shows that elevation as exter-

nal drift is the determinant factor for improved snow/rainfall partitioning and melting

over the study region, and possibly in general in Alpine contexts;

• The use of the improved rainfall and temperature fields as inputs to the operational

RSII hydrological model provides evidence for increased accuracy in the prediction of

discharge volumes and peaks. Placing meteorological fields into a hydrological model

proved essential in confirming the suitability of the interpolation methods for generating

reliable spatially distributed flood modeling inputs.
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Chapter 4
Snowfall limits and hydrological

modeling

The fact is the human race is not only

slow about borrowing valuable ideas–it

sometimes persists in not borrowing them

at all.

Mark Twain

4.1 Introduction

It has long been recognized that Alpine precipitation is controlled by numerous meteorological

factors. Most notably, the observed precipitation type is influenced by latent heat (Unter-

strasser and Zaengl, 2006), thermal and moisture distributions, vertical atmospheric motion

and ice nuclei distributions (Bourgouin, 2000). Relative humidity has been shown to highly

impact the precipitation phase near the freezing point; Matsuo and Sasyo (1981) demonstrated

snowfall with temperatures up to 4 ◦C when the air was relatively unsaturated. In general, the

energy necessary for phase transformation (i.e., melting and evaporation) extracts latent heat

from the atmosphere with limits depending on the relative humidity. The wet-bulb tempera-

ture gives an indication of the air humidity as it measures the lowest temperature that can be

achieved by the evaporation of water from a parcel of moistened air. It is classically measured

with a pychrometer whose bulb is moistened such that air near the wet bulb is cooled by

the transfer of heat from the air required to evaporate the water. Together with the dry-bulb

temperature, the wet bulb temperature determines saturation; the wet-bulb temperature is

always lower than the dry-bulb temperature due to evaporative cooling until atmospheric

saturation is achieved, where both temperatures are equal (Schneider et al., 2011).
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The wet-bulb temperature of different atmospheric layers plays a significant role in the ini-

tiation, melting and freezing of hydrometeors, thereby acting as an influential factor in the

prediction of the altitude where the transition from snow- to rainfall occurs, i.e., snowfall limit

(SL). Accordingly, the wet-bulb temperature is used in different precipitation phase models

for forecast purposes (Bourgouin, 2000; Graham and Evans, 2011). In contrast, computation

of SLs within hydrological models is typically based on a spatial interpolation of dry ground

temperatures with estimated lapse rates, neglecting both pressure and relative humidity (e.g.

Hingray et al., 2010; Fundel and Zappa, 2011), although a limited amount of hydrological

studies use the wet bulb temperature for SL calculations (Blöschl et al., 1991; Haiden et al.,

2011). Because the phase of precipitation depends on the conditions in the location where it

is formed as well as ground conditions, the typical dry temperature interpolation can provide

considerably erroneous information, particularly if lapse rates are treated as constant in time

(Tobin et al., 2011; Minder et al., 2010).

Current snow research for hydrological modeling purposes focuses on the prediction of snow

water equivalent (Jonas et al., 2009) and snow-covered areas. Both predictions face two major

challenges: full energy/mass balance approaches require a significant amount of measure-

ment inputs such as radiation fluxes and water vapor pressure (Rohrer and Braun, 1994;

Lehning et al., 2006) and typically there exist few point measurements available for gener-

alized model calibration and validation. To address this last problem, numerous studies

have focused on the use of remotely sensed snow-covered areas to improve snow simulation

routines (Parajka and Blöschl, 2008; Finger et al., 2011). In the context of real-time flood

forecasting, however, updating model states with remotely sensed snow cover information at

different spatio-temporal resolutions is relatively complex (Dozier, 2011). Flood forecasting

models are driven by Limited Area Models (LAMs) to provide predictions for meteorological

variables. In this context, a straight-forward option to better define the snow component

of hydrological models is to directly use SL output from LAMs as an input to hydrological

modeling to improve the snow/rain delimitation.

LAM temperature and precipitation forecasts have previously been used to update hydrolog-

ical models (Akhtar et al., 2008) and cross validation of LAMs with measured ground data

has been used to compute snowfall accumulation forecasts (Haiden et al., 2011). It is well-

understood that LAM output variables contain error (Pappenberger et al., 2011). However, to

the authors’ knowledge, SL output, specifically, has not yet been tested in terms of its viability

for hydrological modeling. This study therefore attempts to use LAM SLs as hourly input

to a catchment-scale hydrological model. The main goal for this study is to improve flood

forecasting for the Visp catchment in the Swiss Alps characterized by strong topographic

gradients where an incorrect snow/rainfall limit (on daily or sub-daily timescales) typically

(Mezghani and Hingray, 2009) implies a significant over- (or under-)estimation of the source

catchment areas contributing to runoff and infiltration, with a view to operational hydrology.
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4.2 Materials and methods

4.2.1 Study site and meteorological data

The analyses described herein refer to the Visp catchment (see Chapter 2 Section 2.2 of this

thesis for further details on this catchment). Dry-bulb temperature and precipitation mea-

surements were obtained from the MeteoSwiss ANETZ meteorological network (Gutermann,

1986). The use of other Snow and Avalanche research institute (SLF) temperature stations was

initially considered. However, these stations are installed in predominantly exposed areas

for wind and snow observations (Lehning et al., 2002). Accordingly, they are not considered

representative of average local temperature conditions and have not been used in this study.

Rather, all MeteoSwiss stations indicated in Figure 4.1 are used as inputs to the hydrological

model. These stations are located in or near the Valais region (indicated by the dark outline).

The Valais region, corresponding to the catchment of the Rhone river, which receives the

Vispa discharge, is relevant for the spatial interpolation of meteorological variables because it

corresponds to the scale of typical weather phenomena in this area.

0 1000 2000 3000 4000
0

5

10

15

20

25

elevation (m)

n
u

m
b

e
r 

o
f 

st
a

ti
o

n
s/

C
O

S
M

O
 g

ri
d

 p
o

in
ts

 

 
COSMO7
Measured

Temperature/Precipitation Stations

Switzerland ¯

Visp calibration zones
1
2
3

25
km

#

# #

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

Figure 4.1: Location of the Visp in Switzerland with the COSMO7 grid, the hourly temperature
and precipitation stations utilized, and the zones used for GLUE calibration. Only COSMO
grid points located within the large black polygon line (indicating the Valais region) were used.
Inset: Number of COSMO7 grid points and meteorological stations (with hourly data) versus
their respective true ground elevations. Sources: (COSMO, 2011; MeteoSwiss)

4.2.2 COSMO models and output

Both the COSMO2 and COSMO7 forecast reanalyses are used in this study. Details of these

forecast models are provided in Chapter 2 Section 2.3.2 of this thesis.

Twenty-four hour periods from the COSMO2 and COSMO7 models are analyzed. Because
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the COSMO7 product provides 72 hour forecasts, the data is reconstructed by using the first

24 hours of each reanalysis forecast after a six hour initialization period. This process uses

the most recent forecast information (i.e., the smallest lead time predicted) and reduces

sensitivity to state variable initialization. Accordingly, COSMO7 model output is used from

hour 6 through hour 30, omitting the forecast information predicting further into the future.

COSMO7 data was available for 2008 and 2009, while COSMO2 was available for 2009.

The SLs used in these analyses are the output of COSMO. They are computed based on the wet

bulb temperature at every point of the horizontal grid using an empirical method developed

at MeteoSwiss (Häberli et al., 2008, Stoll Personal Communication). In this approach, SLs are

calculated by using a loop from top to bottom over all model layers below 8000m searching for

the first layer with a wet-bulb temperature ≥ 1.3 ◦C. The elevation corresponding to the 1.3◦C

isotherm is assumed to be the threshold for snowfall; above this temperature the precipitation

falls as rain and vice versa. Model output of the SL is provided as an elevation (in m asl) for

each COSMO (x,y) grid point. All COSMO grid points in the Valais are used to provide the SL

input to the hydrological model (see Figure 4.1).

The empirical wet bulb temperature threshold of 1.3◦C has been determined by MeteoSwiss

based on their forecasters’ experience (Häberli et al., 2008) and is also used by the German

Meteo Service (DWD) (Schulz and Schattler, 2009). Other authors suggest different values; for

example, Steinacker (1983) has proposed the threshold value to be close to 1.0◦C. It should

be noted that the meteorological services use the empirical wet-bulb based SL rather than

directly characterizing the COSMO SL from the model’s 3D rain and snow fields. The resulting

predicted SL will be different from the actual SL since the estimation procedure neglects some

(micro-) physical processes and in particular any local variations of hydrometeor melting

conditions (related to vertical winds, hydrometeor size or fall speed). The simplified procedure

is, however, preferred in operational forecasting environments due to its robustness and

greater computational time efficiency (Häberli et al., 2008; Graham and Evans, 2011).

4.2.3 Hydrological model

Hydrological simulations are based on the RSII model described in Chapter 2 Section 2.4 of

this thesis. An additional reservoir with a constant recharge has been implemented in order to

simulate interflow, which provides a rapid, yet delayed flow contribution in the subsurface

layer (Bergstrom, 1995). A time-variable lapse rate is also used with the IDW approach used to

interpolate the temperature forcings in accordance with findings of Chapter 3 of this thesis

and other studies (Tobin et al., 2011; Blandford et al., 2008; Minder et al., 2010).

4.2.4 Snowfall limit methods

The partitioning between rain- and snowfall is described in Chapter 2, Section 2.4.2 of this

thesis. Briefly the approach is solely based on temperature using two critical temperatures to
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delineate between snow and rain as shown below:

α(z) =


0 T (z) < Tc1

T (z)−Tc1
∆Tc

Tc1 ≤ T (z) ≤ Tc2

1 T (z) > Tc2

(4.1)

where α is the ratio of rainfall to total precipitation (-).

In accordance to observed snow/rain distributions (Rohrer and Braun, 1994), the critical

temperatures are set to Tc1 = 0◦C and Tc2 = 2◦C.

This approach shall hereafter be referred to as the Ground Method to indicate its use of

dry-bulb ground temperatures alone for SL calculation.

To overcome the limitations of the Ground Method, a new method is proposed here, based on

the snowfall limits HSL predicted by COSMO, which we call the COSMO Method. The basic

principle of a temperature range ∆Tc = 2◦C for which snowfall and rainfall occur simultane-

ously, is maintained. However, in the COSMO Method, the ratio α is estimated based on HSL

(m asl) in three steps:

1. The range of elevations over which snowfall and rainfall occur, ∆H , is computed as:

∆H = H0 −H1 = ∆Tc

`
, (4.2)

where `> 0 is the time-variable lapse rate estimated from the COSMO temperature field.

It is assumed, as before, that α varies linearly in this range; for elevations z > H0 no

rainfall occurs (α= 0) and for z < H1 only rainfall occurs (α= 1).

2. Assuming furthermore that at the elevation HSL , 75% of the precipitation falls as snow,

i.e. α(HSL) =αSL = 0.25, the elevations H1, H0 can be related to HSL as follows:

H1 = HSL − (1−αSL)∆H

H0 = HSL +αSL∆H
. (4.3)

3. These elevations are then used to determine α(z) for a given elevation band:

α(z) =


0 z > H0

z−H1
H0−H1

H0 ≥ z ≥ H1

1 z < H1

(4.4)

α(z) =


1 z > H0

z−H1
H0−H1

H0 ≥ z ≥ H1

0 z < H1

(4.5)
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Note that there is generally no clear definition of what the SL actually means (Steinacker,

1983); it represents the transition from liquid to solid precipitation, which we assume here to

take place at 25% rainfall. For the Ground Method, this transition (25% rainfall) corresponds

to the threshold of 0.5 ◦C (dry-bulb).

Both methods account for their own respective lapse rate in their calculations of the SL. A

preliminary analysis of the lapse rates demonstrated that some values can be negative due

to the presence of inversion layers in the Valais region. It is known that inversion layers can

occur during the winter up to elevations of 1000 m in the European Alps (Agrawala et al., 2007).

Mean negative lapse rates were noted for some periods on the order of days in 2008 and 2009

respectively. In order to compare the SL methods under typical meteorological conditions and

for the sake of simplicity in this analysis, negative lapse rates were ignored. A positive lapse

rate from the previous time step was maintained in the SL calculations.

4.2.5 Hydrological model calibration and validation

Two different hydrological models are set up by combining the snow/rainfall-runoff module

with each of the above SL limit computation methods. Only COSMO7 model output is used as

input to the model in order to have two years of input for calibration and validation. These

two models are calibrated independently with measured discharge at the Visp catchment

outlet using the Generalized Likelihood Uncertainty Estimation (GLUE) approach (Beven and

Freer, 2001), which is a well-established Monte Carlo simulation method used to assess the

plausibility of hydrological simulations (Pappenberger et al., 2007). This approach assumes

that, given the modeler’s imperfect knowledge of a system, there are many parameter sets

that can be considered equally good simulators of the system. In the hydrologic literature,

equally good parameter sets are termed equifinal, e.g. (Beven, 2004). As a result, instead of a

single hydrological simulation corresponding to a single best parameter set, an ensemble of

simulations corresponding to an ensemble of acceptable parameter sets is retained. These

parameter sets are identified by generating a high number of random parameter sets drawn

from a prior parameter range and by retaining those sets that have a model performance above

a certain threshold criteria (see Table 4.1). For the calibration, the catchment is divided into

3 zones with similar physical characteristics (e.g., presence of glaciers) (see Figure 4.1). The

model performance criteria are the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) and

the mean absolute residual error, referred to as NSE and MARE respectively. The theoretical

optimums are 1 for the NSE and 0 for the MARE criterion and their respective thresholds

for acceptability are ≥0.8 and ≤0.3. The best parameter sets under these two criteria were

selected by taking the intersection of the parameter sets which satisfied both thresholds of

acceptability.

These performance criteria are computed over only medium to high flow events in order to

exclude the daily fluctuations during low flow situations caused by hydropower operations.

Simulations herein could not incorporate these fluctuations because the reservoir storage and
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Table 4.1: Prior parameter range for Monte Carlo simulations with and without the best
performing parameter sets per zone for both the case of incorporating COSMO snowfall limits
(COS) and using dry-bulb ground temperature derived snowfall limits (GND)

Parameter Prior Zone 1 Zone 2 Zone 3
COS GND COS GND COS GND

Degree-day glacier [mm day−1 ◦C−1] 1-8 1.7 2.0 6.8 6.1 3.7 6.4
Degree-day snow [mm day−1 ◦C−1] 3-9 4.0 6.4 8.0 8.4 5.9 5.4

Interflow residence time [hr] 5-200 95 181 12 60 8 26
Subsurface residence time [days] 10-60 33 32 33 32 32 32

Recharge [mm d−1] 0.1-5 1.3 2.1 1.0 0.9 1.7 1.5
Strickler coefficient [m1/3s−1] 10-150 100 105 14 20 50 25

release mechanisms are not public information. The two models (one for each SL method) are

calibrated independently to match the mean flow over the entire calibration period and the

peak flows for the critical flow event at the end of May 2008. The May 2008 event was consid-

ered a high flow event, without, however, being an alert-level flood event (Garcia Hernández

et al., 2009b). The model is validated on the discharge time series for the June 2008 and April

2009 events by performing a continuous simulation through 2008 and 2009. The range of prior

parameter values was determined based on accepted values from literature and use of the

model in the Valais since 2005. In order to hot start the model (i.e., assign a spin-up period that

allows the choice of the initial parameter sets to be immaterial) and account for the beginning

of the hydrological year, the initial conditions for October-December of 2007 were obtained

by running the model with measured data only (since no COSMO data were available). One

hundred acceptable parameter sets were selected based on the NSE and MARE criteria for

the May 2008 event by retaining the parameter sets that adhered to both the MARE and NSE

thresholds of acceptability (≥ 0.8 for NSE and ≤ 0.3 for MARE).

4.2.6 Snow cover validation

For additional validation purposes, a daily IMS snow coverage image (Interactive Multisensor

Snow and Ice Mapping System) provided by the National Oceanographic and Atmospheric

Administration (NOAA) National Ice Center (30 May 2008) and two daily National Snow and Ice

Data Center (NSIDC) MODIS (Moderate Resolution Imaging Spectroradiometer) MOD10-L2

satellite images (1 July 2008 and 1 May 2009) was used to validate the snow coverage for the

three events.

IMS images (4km x 4km resolution) are produced based on a composite of satellite images

using visible, passive and microwave wavelengths (see NIC, 2008; Helfrich et al., 2007; Pullen

et al., 2011, for details). A prime advantage of the microwave sensors is their ability to penetrate

clouds. The IMS determination of ‘snow/no-snow coverage’ is indicated when at least 40 % of

a grid cell is covered by snow of any depth.
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MOD10-L2 images (500m x 500m resolution) are Terra satellites images of snow cover (see Hall

et al., 2006, for details). The snow mapping algorithm classifies pixels as snow, snow-covered

lake ice, cloud, water, land, or other based on the reflectance or radiance properties in each

500 m pixel using the Normalized Difference Snow Index (NDSI) ratio, i.e., the difference in

reflectance of snow in the visible and near-infrared wavelengths (Hall et al., 2006). Fractional

snow cover maps are based on the regression technique of Salomonson and Appel (2004). The

MODIS products calculate the fractional area (in percent) of each pixel covered by snow for

both land and inland water bodies not covered by clouds.

A comparison of MODIS and IMS snow coverage estimates on a daily basis with snow mea-

surement stations (e.g., Snotel) indicated that the accuracy of IMS snow coverage increases

with increasing snow cover and MODIS images tend to overestimate snow cover in the accu-

mulation season (Brubaker et al., 2005). Most relevant to this analysis, Brubaker et al. (2005)

demonstrated that IMS detected snow-free cells at a rate between 95 and 100 % in the spring

season relative to measurement data. Similarly, snow-free cells as indicated by MODIS were

confirmed 100 % by station data throughout the year 2000.

Both types of snow images provide a means to distinguish between snow-covered and snow-

free areas. In this study, they are used to validate the simulated snow cover at the time

of the calibration and validation events. Since the model yields snow heights (in terms of

water equivalent) per elevation band rather than absence or presence of snow per pixel, this

validation requires a post-treatment of the simulation results in two steps: i) the simulated

mean snow-covered area of the catchment is computed and ii) the corresponding snow-

covered pixels are estimated based on the hypsometric curve of the catchment. As both the

model and the snow cover images integrate snow cover over the winter season, it is assumed

here that this validation approach is suitable to confirm the results of this analysis.

It should be noted that this study attempted to validate all rain events with these MODIS

images because they have the same resolution as the hydrological model input interpolations

(i.e., 500 m). However, MODIS images can only be used on clear days immediately following

rain events due to the inability of infrared to penetrate clouds. For the May 2008 event, a

coarse 4 km resolution IMS satellite image was the only validation image available because

small rain events followed the event and hindered visibility.

4.3 Results

4.3.1 COSMO and ground station data comparison

A comparison of ground station versus COSMO reanalysis temperatures demonstrates that

both data sets show strongly time-varying lapse rates (Figure 4.2). The lapse rates might

be biased for both data sources: For observed temperatures, this is primarily due to the

concentration of hourly gauges within the elevation range of 500 - 1000 m asl (Frei and Schär,

1998)(Figure 4.1). For COSMO outputs, this can be related to the coarseness of the resolution
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which prevents an accurate parameterization of a detailed heat balance (Leimer et al., 2011)

and to the fact that a grid point cannot be identified with a real-world location due to the

different model orography. Both of these factors also partly explain the difference between

COSMO2 and COSMO7 predictions. In spite of the different sources of bias, these lapse rates

can be considered reasonable; they show the same, expected, variation with consistently lower

lapse rates in winter and steeper rates in spring, early summer (Rolland, 2003; Blandford et al.,

2008; Minder et al., 2010).

By looking more in detail at the particular months of May 2008, July 2008 and April 2009

(Figure 4.2), (the two spring events and one summer flood event), differences emerge in the

lapse rates estimated by the two data sources (COSMO and observed station data) through

analysis of the mean lapse rates per month. In the months when the flood events occurred,

the predicted mean hourly lapse rates are higher for the COSMO model output. With steeper

lapse rates predicted by the COSMO stations, the SL can be predicted to be lower because

lower temperatures are extrapolated to higher altitudes.
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Figure 4.2: Comparison of the monthly mean of the absolute value of the variable lapse rates
obtained from COSMO2 (2009 only) and COSMO7 temperatures and from measured hourly
ground temperature data for a) 2008 and b) 2009. The rectangles over May 2008, July 2008 and
April 2009 indicate the calibration (‘C’) and validation (‘V’) periods.

Similarly, a comparison of COSMO SLs with the 25% snowfall elevation obtained via the

Ground Method shows that there is a difference in the SLs calculated for all event months

(Figure 4.3). For the calibration and validation events, the mean of the monthly snow limits

predicted by COSMO are lower. The wet-bulb threshold of 1.3 ◦C for 25% of rainfall was appar-

ently lower than the corresponding threshold of the Ground Method, which is 0.5 ◦C (dry-bulb).

For comparison purposes, we also computed the SL with COSMO dry-bulb temperatures and

a snow/rain transition range of 0-2◦C. Figure 4.3 shows that the SLs computed with COSMO

dry temperatures do not correspond to the snowfall limits determined by the COSMO method

(using wet-bulb temperatures). The differences between the SLs determined by the Ground

Method and the COSMO Method are therefore due to a combined effect of contrasting lapse
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rates and the incorporation of relative humidity information. Furthermore, the time-varying

differences between the wet-bulb and dry-bulb derived SLs for COSMO2 and COSMO7 sug-

gest that the wet-bulb temperature cannot easily be replaced by a dry-bulb temperature SL

estimation routine; if the bias has been constant in time, one might have proposed to simply

modify the snow/rain transition threshold for the dry temperature estimation, however this is

not the current case.

4.3.2 Hydrological modeling

Before analyzing the simulation results of both SL methods, the plausibility of the calibrated

parameter values should be analyzed. In fact, calibrating the rainfall-runoff transformation

model combined with two different SL methods will necessarily lead to different parameter

sets. However, it is expected that only the parameters directly related to fast runoff processes

are very sensitive to the choice of the SL method and to the related timing and spatial dis-

tribution of water input during peak flow events. Slow runoff parameters should not vary

significantly between the two model set-ups. This is confirmed by the two best parameter

sets found for each of the methods (Table 4.1). As expected, the residence times of the slow

subsurface stores and the recharge flux show similar values for the two methods. In contrast

the fast runoff parameters (the Strickler coefficient and the interflow residence time) vary

strongly between the two methods, except the former for the highest elevation zone (Zone 1,

see Table 4.1), which has the highest glacier coverage (97%) and the smallest contribution to

fast runoff processes. For this zone, the calibrated degree-day factor for snow also strongly
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Figure 4.3: Comparison of the mean monthly snowfall limits calculated with the COSMO2
(for 2009 only) and COSMO7 model outputs by the COSMO (Wet) Method and with observed
ground temperatures by the Ground (Dry) Method for a) 2008 and b) 2009. The mean monthly
snow limits calculated according to the dry COSMO2 or COSMO7 temperatures is also in-
dicated. The rectangles over May 2008, July 2008 and April 2009 snow limits indicate the
calibration (‘C’) or validation (‘V’) periods.
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varies between the methods. This might indicate an effect of compensation for imperfect

liquid water input to the rainfall-runoff transformation module. A similar effect might be

suspected for the strongly varying glacier degree-day factor for Zone 3 that has an extremely

small glacier coverage (1%).

The 100 best discharge simulations identified with the calibration procedure outlined in

Section 4.2.5 for each of two methods are compared to the observed discharge in Figure 4.4.

Note that the sub-daily fluctuations around the base flow have been filtered from the observed

discharge time series using the daily mean discharge. These fluctuations are in fact the result

of unknown hydraulic regulations, which typically only take place during low and medium

flow.

As shown in Figure 4.4, the Ground Method causes the non-flood event of May 2008 to be closer

to the flood alarm level (Garcia Hernández et al., 2009b) with some acceptable simulations

crossing this threshold and the mean of the acceptable simulations significantly exceeding the

peak discharge.

With the COSMO Method, this non-flood peak is more accurately predicted (see the NSE

and MARE values in Figure 4.4). Furthermore, the validation events also suggest that the

COSMO Method provides a more accurate snow/rainfall partitioning as evidenced by a better

reproduction of the peaks, particularly for the April 2009 validation event. Note that the peak

in July 2008 is approximately the same for both methods in spite of the different lapse rates

and predicted snow limits. This result indicates that the SL plays a minor role during this

summer period.

In fact, reliable SLs are most critical in spring when the soil storage and the snow layer of signif-

icant parts of the catchment are close to their saturation thresholds. At this time, the SL highly

influences the runoff contributing area. Simultaneously, dry air temperature interpolation

leads to SLs at higher elevations, which potentially produces a considerable overestimation of

rainfall-experiencing catchment areas and an underestimation of snow receiving areas. This

is illustrated in Figure 4.5 showing a comparison of the SLs and the corresponding regions

of the catchment receiving snow or rain for the day when the catchment received the most

rainfall during the 2008 calibration event, (30 May 2008). The SL is significantly lower with

the COSMO Method; the percentage of the catchment receiving snow is 51% and 36% for the

COSMO and Ground Methods respectively.

A comparison of snow coverage for the last day of the 2008 calibration event in Figure 4.6 shows

a similar difference. With the COSMO Method, the simulated snow covered area corresponds

to 57% of the catchment area (Figure 4.6b). In contrast, the Ground Method generates 44%

snow coverage (Figure 4.6a). The use of a 4 km resolution IMS satellite image (again, no finer,

cloud-free resolution images were available) to validate the simulated snow covered area

suggests a snow coverage for 66% of the catchment area (Figure 4.6c).

Similar results can be seen with a comparison of snow coverage for the two validation events
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Figure 4.4: a) Discharge comparison for the calibration rain event in May 2008 and the val-
idation events in July of 2008 and April of 2009 with the COSMO7 snowfall limit reanalysis
forecasts (COSMO Method). b) Discharge comparison for the calibration rain event in May
2008 and the validation events in July of 2008 and April of 2009 with ground temperature based
snowfall limit estimation (Ground Method). Mean NSE and MARE values over the three events
are shown. The measured discharge has been filtered to smooth daily fluctuations outside of
the peak events. The ‘C’ and ‘V’ labels indicate either calibration or validation event.
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with MODIS (MOD10-L2) snow cover images at 500 m resolution. For both validation events

the meteorological forcing interpolation resolution for the hydrological model and the satellite

image resolution are the same.

In the case of the 2008 validation event, the snow coverage is very similar for the Ground and

COSMO Methods (25% and 23% snow respectively) (Figures 4.7a and b) and close to that of

the MODIS satellite image which shows 24 % snow coverage. This result is not unexpected in

that the hydrographs are very similar for both methods.

In contrast, for the 2009 spring validation event, the snow coverage of the hydrological model

output has a different spatial snow coverage than the satellite image along the valley branches

(Figure 4.7). Quantitatively, with the COSMO Method, the simulated snow covered area is

89% of the catchment area and corresponds well to the image snow covered area at 91%. In

a)
LEGEND

0 10
km

Above SL
Below SL

b)

¯

Figure 4.5: Snowfall limits (SL) for the 30 May 2008 (i.e., the day with highest rainfall during
the calibration event) as derived by a) the Ground Method and b) the COSMO Method.
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¯

c)b)a)
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Figure 4.6: Snow coverage (30 May 2008, calibration event) simulated with a) hourly ground
temperature stations (Ground Method) and b) COSMO7 snowfall limit forecasts (COSMO
Method). c) Observed snow coverage (30 May 2008) based on an IMS snow coverage satellite
image. The resolution for images a)-b) is 500 m and for c) is 4 km. Snow coverage percentages
are a) 44%, b) 57% and c) 66% respectively.

83



Chapter 4

0 10

¯

c)b)a) LEGEND

Snow
No Snow

No Data / Clouds

d) e) f)

0 10
km

¯

km

Figure 4.7: Snow coverage for validation events, July 2008 (top) and April 2009 (bottom), simu-
lated with a,d) hourly ground temperature stations (Ground Method) and b,e) COSMO7 snow-
fall limit forecasts (COSMO Method). Observed daily snow coverage from MODIS (MOD10-L2)
satellites is shown in (c) for 1 July 2008 and f) for 1 May 2009 (1 day after late April event). The
resolution for all images is 500 m. Snow coverage percentages are a) 25%, b) 23%, c) 24%, d)
83%, e) 89% and f) 91% respectively.

contrast, the Ground Method generates 83% snow coverage (Figure 4.7d).

These results suggest that the Ground Method underestimates the snow coverage for all three

analyzed peak flow events. This could possibly explain why the interflow residence parameter

of the corresponding calibrated model is much higher than for the COSMO Method (to obtain

a similar hydrological response as the COSMO Method, the Ground Method model tries to

retain the water longer in the considerably larger contributing, snow-free, catchment part).

In conclusion, the calibration and validation images indicate that the proposed SL calculation

method based on COSMO output has the potential to provide a more accurate data source

for locating the snow/rain transition during spring and that solely ground temperature mea-

surements may be inadequate to provide SL information during this time of the year. Future

hydrological analyses will be conducted with more reanalysis data to validate and define the

limits of the new method.
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4.4 Conclusions

Hydrological flood forecasting models commonly compute the snow/rain transition elevation

(snowfall limit, SL) based on lapse rates derived from dry, ground temperature measurements.

However, this study shows that such an approach can lead to significant inaccuracies in runoff

computations due to the resulting erroneous spatial interpolations of the SLs. This is par-

ticularly critical in spring when (dry) air temperature-based SL estimation is highly likely to

overestimate the SL elevation when a large part of the catchment is close to saturation. To

overcome this problem, this study has proposed a new method to estimate snow/rain tran-

sition limits for hydrological models based on SL output from COSMO Limited Area Models

that are calculated with humidity and wet bulb temperature information. Using a case study

from the Swiss Alps, the new method is shown here to yield better estimates of contributing

areas during spring peak flow events involving snowmelt. This, in turn, significantly improved

runoff simulation. In conclusion, this work suggests that there exists a broad potential use for

reanalysis datasets from Limited Area Models for hydrological modeling in Alpine regions.
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Chapter 5
Improving the degree-day method for

sub-daily melt simulations

Simplicity means the achievement of

maximum effect with minimum means.

Dr. Koichi Kawana, Architect

5.1 Introduction

Hydrologic prediction in Alpine regions critically depends on the simulation of snowmelt

processes, e.g. to predict discharge regimes for hydropower production (Schaefli et al., 2007)

or for real-time flood forecasts where runoff volumes depend on total rainfall and meltwater

input (Tobin et al., 2012). A range of snowmelt methods of different complexity and data

requirements exists. If seasonal streamflow distributions are sought, however, the complexity

of any snowmelt simulation method should be in balance with that of the hydrologic response

model for which it is being developed.

The most detailed methods include distributed snowmelt and hydrological models which use a

full energy balance approach (Lehning et al., 2006). Such approaches are demanding in terms

of data collection and computations. For many real-world applications in sparsely gauged

catchments (Rossa et al., 2010), however, detailed methods are not feasible and much simpler

methods are required. A popular simple snowmelt simulation method for catchment-scale

hydrological models is the temperature-index approach relating snowmelt rates directly to air

temperature via a so-called degree-day factor (Hamlin et al., 1998; Dunn and Colohan, 1999;

Schaefli et al., 2005; Bocchiola et al., 2010).
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Whether full energy balance models outperform simpler temperature-index approaches in

terms of simulating catchment-scale discharge or melt is currently an ongoing debate (Kustas

et al., 1994; Zappa et al., 2003; Slater et al., 2007; Debele et al., 2010). Based on the work of

Ohmura (2001), it is commonly accepted that the good performance of heuristic temperature-

based methods can be explained based on physical reasons; temperature is a physical variable

controlling the rates of longwave radiation and sensible heat flux and is highly correlated to

the three most important energy sources which determine snowmelt: incoming longwave

radiation, absorbed global radiation (shortwave) and sensible heat flux. However, using solely

temperature as a proxy for snowmelt neglects vapor pressure, wind, and reflected radiation,

quantities known to influence the energy balance and snowmelt processes (Kustas et al., 1994;

Pellicciotti et al., 2005; Carenzo et al., 2009).

Accordingly, basic temperature-index models cannot account for the high natural variability

of melt rates (Blöschl and Kirnbauer, 1992), a problem which is exacerbated if such melt

models are combined with simplified, lumped rainfall-runoff schemes that further smooth

the hydrologic response or if they are used for small time steps which need to capture diurnal

cycles (e.g., hourly time steps are typically required for hydrologic applications).

In order to increase the physical basis and to emulate simplified energy balance models, there

are many research efforts in progress to include more physical information in temperature-

index models (i.e. extended approaches). The most straightforward extension is the incorpora-

tion of global radiation measurements which distribute melt in space according to local factors

of exposition and account for varying solar position (Braun et al., 1994; Brubaker et al., 1996;

Kustas et al., 1994; Cazorzi and DallaFontana, 1996; Klok et al., 2001; Hock, 2003; Debele et al.,

2010; Jost et al., 2012). Further research has tried to include the evolution of snow density and

snow cover albedo over the melt season (Blöschl, 1991; Pomeroy et al., 2003; Pellicciotti et al.,

2005; Carenzo et al., 2009; Li and Williams, 2008; Hebeler and Purves, 2008). This seasonality

can also be emulated with time-varying snowmelt factors, e.g. as a function of snow density

(Kuusisto, 1980).

The most widely used extended temperature-index approach was proposed by Hock (1999),

accounting for incoming potential radiation of differently exposed (aspect, slope), regularly

spaced grid cells (Huss et al., 2008; Kling and Gupta, 2009; Koboltschnig et al., 2009; Magnusson

et al., 2011; Kobierska et al., 2011). This approach has been shown to give good results at the

catchment scale, in particular for sub-daily and spatially distributed simulations of snowmelt

(Hock, 1999; Jost et al., 2007; Konz et al., 2007).

This approach, which we call hereafter the “Hock method”, has, however, several shortcomings:

First of all, studies have highlighted that it is oversensitive to temperature variations (Pellic-

ciotti et al., 2005; Viviroli et al., 2009). Secondly, while being almost universally applicable given

the wide-spread availability of digital terrain models (DEM), it does not account for actual

incoming radiation, i.e. actual weather conditions. It might be argued that the method mimics

diurnal melt cycles disconnected from real variations of the melt-temperature relation. Finally,

88



5.1. Introduction

the melt method is solved on a finely discretized scale to account for the spatial heterogeneity

of terrain slopes and aspects; the resulting snowmelt at a fine grid-scale is often averaged

over some coarser areal units to provide melt input to (semi-)lumped hydrological models

that are set up for practical applications (Viviroli et al., 2009). This “up-scaling” smoothes the

simulated spatial variability of snowmelt and the net effect of including high spatial details in

the snowmelt routine on the simulated catchment discharge is not trivial to quantify.

This work proposes a new, time-variable melt method based on the classical degree-day

method to overcome these shortcomings. The new method uses observed or interpolated

daily temperature extremes to impose a diurnal cycle on the melt rates at the scale of the

precipitation-runoff transformation model (i.e. each subcatchment has its specific melt rates).

To assess the performance of this new, time-variable degree-day method and to compare it to

the classical degree-day method and the Hock method, analyses on three scales are conducted

as listed below.

1. Initially, the classical degree-day (CD) and time-variable degree-day (TD) methods are

compared on a point scale by comparing observed snowmelt lysimeter outflow and

simulated snowpack outflow. This analysis provides a general idea of the performance

of the TD method at a point location.

2. The CD, TD and Hock methods are subsequently tested with a distributed point dataset

to compare the melt model performance in terms of melt simulated over a certain melt

period. The purpose of the distributed point analysis is two-fold: a) to understand

how well the widely-used Hock method ‘mimics’ the effect of real (and not potential)

radiation on snowmelt and b) to test whether the models show a performance difference

depending on the dominant aspect of the locations of temperature observations (which

should help to elucidate the question whether the relationship between snowmelt and

temperature is stronger for certain aspects).

3. Finally, the methods are compared on a catchment-scale analysis with the spatially-

explicit model of the hydrologic response described in Chapter 2 Section 2.5 of this thesis.

This analysis assesses the performances of the melt models in terms of catchment-scale

hydrology, which is a commonly accepted method to evaluate the performance of

snowmelt routines (see namely Brubaker et al., 1996; Hock, 1999, 2003).

The ultimate goal of the steps of this approach is to demonstrate the performance of the

TD method, which has been developed to capture sub-daily melt fluctuations for a range

of data-constrained, minimalist hydrological models which are typically used for real-world

applications. This work has been prioritized due to the difficulty in quantifying the water

stored in the snow layer or Snow Water Equivalent (SWE) for Alpine catchment modeling. In

the particular case of the Swiss Alps, the average water stored in the form of snow in catchments

is not easily related to SWE measurements. This is due to three factors: 1) Switzerland has

limited monitoring infrastructure with regards to SWE sampling. A total of 42 stations measure
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SWE every 14 days in Switzerland. 2) Snow cover distribution is temporally and spatially highly

variable in Alpine regions. 3) Existing gridded SWE data over Europe, which uses SWE and

snow depth measurements along with remotely sensed snow-cover area (SCA) data (Hüsler

et al., 2012), is more representative of flatter terrain over Switzerland. In fact, it is quite difficult

to regionalize SWE and to update the states of gridded SWE data when measurements are

limiting. Due to these factors, a properly calibrated snowmelt scheme is assumed here to be the

best approach to provide catchment-representative distributions of snowmelt contributions

in this Alpine study region.

A review of the datasets in this study is provided in Section 5.2 of this Chapter while the

modeling approaches and experimental set-up are detailed in Section 5.3 and 5.4 respectively.

Results, in Section 5.5, compare the temperature-index approaches in terms of whether the

methods properly reflect actual melt conditions. This Chapter concludes with a summary of

the findings in Section 5.6.

5.2 Data and study catchment

5.2.1 Point scale analysis

The Cotton Creek Experimental Watershed (CCEW) catchment is a study site used to examine

the impact of forest harvesting on peak flows in montane catchments. As spring snowmelt

dominates the hydrology, frequent, distributed snow measurements have been collected in

order to analyze the spatial and temporal variability of melt. Data for the point scale analysis

were utilized from two sites in the CCEW. Hourly precipitation is from the Cotton Upper

climate station (CIU, 1780 m a.s.l), and hourly air temperature and snowmelt lysimeter outflow

are from a hillslope monitoring site (Site 6003, 1652 m a.s.l.) located approximately 1500 m

north of CIU (Jost et al., 2012). Periodic snow depth measurements from the spring snowmelt

seasons of 2007 and 2008 are used to calibrate and validate the melt model’s snow height

predictions, respectively. The hourly snowmelt lysimeter data permit testing of the sub-daily

dynamics for the CD and TD melt methods. Further details of the dataset are available in

Smith (2011) and in Jost et al. (2012).

5.2.2 Distributed point and catchment analysis

Data for the distributed and catchment-scale studies were obtained from a high resolution,

wireless sensor network installed in June 2009 in the Dranse de Ferret catchment located in

the Valais region. This catchment is part of the larger watershed, the Dranse, described in

Section 2.2 of this thesis (Figure 5.1).

Data were collected at 1 min intervals between June and October 2009 and are accessible in

real time on the internet (www.climaps.com). Prior to June, snow accumulations and the risk of

avalanche made the transport and installation of the meteorological stations impossible. For
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Source areas

m a.s.l.

m a.s.l.

Figure 5.1: Map of the Dranse de Ferret catchment indicating locations of Sensorscope meteo-
rological stations, the glacier, and the river network generated based on the digital elevation
model (25 m resolution) indicated in gray shades. Top inset: location of this catchment within
Switzerland; bottom inset: location of source areas.
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the 2009 field campaign, the wireless sensor network consisted of 12 “Sensorscope” stations.

Two of the 10 stations were located on the glacier (see Figure 5.1) which collected data between

September and mid-October (due to installation challenges). For this analysis, the stations

located on the glacier were not utilized due to the short time span of the data and since the

data could not be obtained during the melting season (notably April through the beginning of

July for this region).

The “Sensorscope” technology (Ingelrest et al., 2010) measures various meteorological data,

including: air temperature at 1.5 m above ground, precipitation, incoming shortwave radiation,

skin temperature, humidity, wind speed and wind direction as well as soil moisture, soil

temperature and suction. Profiles of the temperature and radiation measured at one station

can be seen in Figures 5.2. For further technical details on measuring devices used, please

refer to (Nadeau et al., 2009; Simoni et al., 2011).

It should be noted that temperature measurements from passively ventilated sensors (such as

those used in this wireless sensor network field campaign) have an inherent bias due to heating

of the radiation shield (e.g. Huwald et al., 2009). However, in this study the temperatures could

not be corrected as proposed in (Huwald et al., 2009) due to a lack of reflected shortwave

radiation measurements and the wide range of albedo observed at the different stations.

For the distributed point data analysis, temperature, precipitation and radiation data are used

from the 10 non-glacier stations located in two groups to test the performances of the CD,

TD and Hock melt methods. Each group is composed of 5 stations and located on either

the southeast or southwest face of the region. The stations are located at elevations ranging

between 1780 and 2300 m on the southwest-facing slope and between 2160 and 2430 m on

the southeast-facing slope. Compared to previous research conducted at the site scale (Kustas

et al., 1994; Jost et al., 2007) with distributed measurements (Cazorzi and DallaFontana, 1996;

Pellicciotti et al., 2005; Zappa et al., 2003; Bavay et al., 2009), the locations of the meteorological

stations offer a unique opportunity to compare the melt method performances relative to

temperature measurements from differing aspects.

The mean positioning of the groups is different where the southeast facing group is more

south-facing than the southwest facing group (Simoni et al., 2011). In effect, incoming short-

wave radiation values were recorded to be approximately 8 W m−2 higher for the southeast

facing group throughout the 5 month field experiment and, the groups, separated by ap-

proximately 1 km, do not show well correlated temperature lapse rates. For the southeast

facing stations, the mean hourly lapse rate over the experimental period was -0.0075 ◦C m−1

whereas the mean hourly lapse rate for the southwest facing stations was -0.0054 ◦C m−1.

Within such an Alpine environment, the spatial distribution of surface temperatures is strongly

influenced by the complex topography and related effects on the energy balance (e.g., local

wind systems, differences in expositions and shading). These effects cannot be captured by a

simple temperature lapse rate. For the purpose of this study, it is nevertheless assumed that

the contrasting lapse rates between the two groups of measurement stations reflect differences
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in the radiation balance that are likely to influence snowmelt rates.

For the catchment-scale analysis, the same meteorological variables from the 10 stations are

used to test the performances of the three melt methods, however, these data were spatially

distributed throughout the catchment using interpolation (see Experimental Set-up Section

5.4). The Dranse de Ferret catchment site has a total surface area of 21 km2. The altitude

ranges between 1775 m and 3206 m a.s.l. and the catchment is drained by the Dranse de Ferret

river. The Dranse de Ferret catchment has steep slopes and is surrounded by high mountains

(e.g. the nearby Grand St. Bernard pass, 2500 m a.s.l.). Approximately 5% of the catchment

area is covered by glacier. Due to the high mountainous location of the catchment, the climatic

regime is particular; annual rainfall in this region can locally exceed 2 m y−1 and discharge

peaks in the spring due to snowmelt.

Water level data are available from a flow meter constructed at the outlet of the catchment.

The stage-discharge curve was obtained with the salt dilution method (Simoni et al., 2011).

The resulting discharge profile can be seen in Figure 5.3. Analysis of the discharge from

this dataset was originally conducted by Simoni et al. (2011), where the contributions of

glacier melt, snowmelt, rainfall-runoff and baseflow to the discharge time series were detailed.

Once the baseflow is subtracted, snowmelt composes approximately 85% of the remaining

discharge volume, whereas glacier melt comprises less than 10%. Due to its small impact on

the discharge signal, this study has neglected glacier melt in the calibration of the hydrological

model.

5.3 Modeling approaches

Simulation of snowmelt-induced hydrologic processes requires a suite of modeling steps: i)

characterization of solid and liquid water input to the system (rainfall, snowfall), ii) modeling

of the snowpack evolution, its solid and liquid water content (resulting from rainfall, snowmelt

and refreezing) and water outflow from the snowpack, in addition to iii) transformation of

the so-called equivalent precipitation (total water outflow from the snowpack plus rainfall on

snow-free ground) to river discharge. In the context of this paper, the focus is on the newly

proposed snowmelt algorithm, the TD method; for all other modeling steps, only the essential

details are presented.

5.3.1 Aggregation state of precipitation

The partitioning of precipitation into snow- and rainfall is described in Section 2.4.2 of this

thesis.
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Figure 5.2: a) Measured temperature and b) measured radiation at station 10 (elevation 2256
m) during the simulation period used in the distributed point and catchment-scale analyses.
c) as as a function of time, illustrating the quasi-sinusoidal function of Equation 5.3.
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Figure 5.3: Catchment-scale analysis: left) measured discharge Q (m3s−1), right) normalized
measured and reference discharge Q (m3s−1)

5.3.2 Snowmelt and refreezing

Three snowmelt methods, based on the temperature-index concept, are analyzed in this study:

1) the classical degree-day method with a constant degree-day factor (the CD method), 2) the

well-known method proposed by Hock (1999), called the Hock method hereafter, and 3) the

new approach with a degree-day factor that varies within the day (the TD method).

The constant degree-day method, the simplest temperature-index snowmelt method, is based

on the assumption that melt rates depend solely on air temperature (Rango and Martinec,

1995). According to this formulation, the rate of snowmelt, at location x and at time t , M(x,t ),

(mm h−1) is given by:

M(x, t ) =
{

ac (T (x,t )−T0)
n T (x, t ) > T0

0 T (x, t ) ≤ T0
(5.1)

where T (x,t) is the air temperature at a location x at time t (h), T0 is the constant threshold

temperature above which melt occurs (here assumed to be 0 ◦C), ac (mm day−1 ◦C−1) is the

constant degree-day factor and 1/n is the time-step conversion factor with n = 24 (h/d). ac

represents the rate of snowmelt corresponding to one degree of positive temperature during

one day.

In the Hock method, the above basic melt equation is modified to account for the local

95



Chapter 5. Improving the degree-day method for sub-daily melt simulations

estimate of potential (clear-sky) incoming solar radiation Ipot (W m−2) in the form:

M(x, t ) =
{

( 1
n ai +ρi Ipot (x, t ))(T (x, t )−T0) T (x, t ) > T0

0 T (x, t ) ≤ T0
(5.2)

where ai is the melt factor (mm day−1 ◦C−1) and ρi is a radiation coefficient for snow (m2

W−1 mm h−1 ◦C−1). Clear-sky incoming potential solar radiation (Ipot ) is simply inferred from

geographic location (latitude) and topography (shading, local slope, aspect and elevation).

According to Hock (1999), the empirical snowmelt model parameter, ρi , has been fixed in this

study to 0.6 10−3 (m2 W−1 mm h−1 ◦C−1). Note that ai is usually called melt factor rather than

degree-day factor to avoid confusion between the methods. In the remainder of this paper,

the generic term degree-factor will be used for both ac and ai .

A modified version of the CD method is herein proposed. In this case the degree-day factor is

allowed to vary throughout the day, to account for the actual distribution of snowmelt rates in

time, which peaks at the hours of maximum incident radiation and falls to a minimum during

the night. We, thus, assume that the snowmelt rate follows the typically sinusoidal variation

of radiation during the day and that it is constant during the night, i.e. we impose a quasi-

sinusoidal function (Figure 5.2c) of time-variability on the degree-day factor. The amplitude

of the degree-day factor’s daily cycle variability cannot be directly related to actual radiation

because this variable is rarely measured. We, therefore, assume that the daily temperature

amplitude (difference between daily maximum and daily minimum temperature) is a good

proxy of the amplitude of the daily cycle of incoming radiation and that it can efficiently

discriminate between days when there is a strong within-day variability of radiation (and thus

of snowmelt rates) and days with a low variability.

This new time-variable degree-day factor as , which replaces the constant ac in Eq. 5.1 can be

written as:

as(td ) =
{

ac +β∆T (d)sin(π td−t0
t1−t0

) t0 ≤ td < t1

ac −β∆T Z otherwise
(5.3)

where td (h) is the hour of the day d , t0 (h) is the start time of daylight and t1 (h) is the end

of daylight on day d . ac (mm day−1 ◦C−1) is the constant degree-day factor, ∆T (d) (◦C) is

the difference between the maximum and the minimum daily temperature on day d and β

(mm day−1 ◦C−2) is a factor to convert the temperature amplitude into a degree-day factor

amplitude which has to be calibrated (considering the constraint that as has to be positive for

positive temperatures). Z (-) is a factor to ensure that the daily mean value of as equals ac ,

i.e. that the integral of the sinusoidal function during the day time equals the integral of the

constant value during the night, i.e.

Z =
∫ t1

t0
sin

(
π td−t0

t1−t0

)
dtd

ln
= 2

t1 − t0

πln
, (5.4)
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5.3. Modeling approaches

where ln = 24− t1+ t0 (h) is the length of the night. Note that t0 and t1 could also be allowed to

be a function of d rather than constant.

The snowmelt method resulting from applying Eq. 5.3 with as is called the time-variable

degree-day method (TD). The resulting degree-day factor shows sub-daily fluctuations around

a constant mean value; the amplitude of these fluctuations is proportional to the daily temper-

ature amplitude, which accounts for cloudy or rainy days when incoming radiation decreases

(Figure 5.4a and b). Note that there was a previous attempt to account for the within-day

variability of temperature for snowmelt computation by Dunn and Colohan (1999), who con-

sidered only the fraction of the day when the temperature exceeded a critical threshold for

melt rather than the mean daily temperature for daily melt computations.
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Figure 5.4: a) The measured radiation and precipitation time series averaged over all Sen-
sorscope stations during a rain event, b) the corresponding time series of the time-variable
degree-day factor as

For hourly snowmelt simulations, refreezing during periods when the temperature drops

below the critical threshold for melt has to be considered. For all melt methods analyzed,

refreezing is calculated analog to melting:

F (x, t ) =
{

a f (t )(T (x,t )−T0)
n T (x, t ) ≤ T0

0 T (x, t ) > T0
(5.5)

where a f (mm day−1 ◦C−1) is the refreezing factor. This refreezing factor is often linearly related

to the degree-day factor (Anderson, 1973) through a multiplicative factor ar (−) to account

for the fact that refreezing with negative temperatures is usually assumed to be lower than

the corresponding melt rates with positive temperatures (but e.g. Bergstrom, 1975, assumes

ar = 1). Accordingly, a f ,x = ar ax where x = c, i , s stands for one of the three degree-day factors.

The calibrated factor a f is used in place of the degree-day factors when the temperatures fall

below or equal to the threshold temperature T0. The melt equations defined by M(x, t) are

replaced by the freezing equation F (x, t ) in this case.
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Chapter 5. Improving the degree-day method for sub-daily melt simulations

Melt generated by the TD method and the Hock method are distributed in space and time. (The

CD method is assumed constant in time and space.) The Hock method is defined on a pixel

basis due to its use of solar positioning data and a digital terrain model. Melt per pixel from

the Hock method is summed on a subcatchment basis for use in the hydrological model. The

TD method is distributed in time and space with the time-varying quasi-sinusoidal function

defined by the temperature extremes in each subcatchment, thereby remaining constant in

each subcatchment.

Snowpack evolution

The evolution of the solid and the liquid water content (in terms of snow water equivalent) of

the snowpack is simulated separately with the same equations defined in Section 2.4.2 of this

thesis. The solid store has as input snowfall and as output, snowmelt; the liquid store has as

inputs, snowmelt and rainfall, and as outputs, snowpack outflow and refreezing (see Hingray

et al., 2010); the routine is very similar to the snowmelt routine of the well-know HBV model,

(Bergstrom, 1975).

5.3.3 Spatially-explicit hydrological model

For the catchment-scale analysis, the spatially-explicit hydrological model described in Section

2.5 of this thesis is used to integrate the melt methods. With this model, the snowpack outflow

together with rainfall on snow-free catchment parts (the so-called equivalent precipitation)

is transformed into river discharge, based on the formulation of transport by travel time

distributions (Rodriguez-Iturbe and Valdés, 1979; Gupta et al., 1980; Rodriguez-Iturbe and

Rinaldo, 1997).

In such a spatially-explicit model, the hydrologic response of a water input event (rainfall or

water outflow from the snowpack) is determined by the set of flow paths that are activated by

the spatial input pattern and by the volume of water traveling through the individual paths

relative to the total water input to the catchment.

5.4 Experimental set-up

5.4.1 Point scale analysis

The performance of the proposed TD method is compared against the CD method for the

point scale dataset from the CCEW CIU station (Jost et al., 2012). Both models are calibrated

on the spring melt seasons so that the simulated snowpack outflow reproduces as closely as

possible the observed snowmelt lysimeter outflow (the calibration criterion is the sum-of-

squared-errors, SSE). The TD method has 4 parameters to calibrate (as , β, ar , θcr ) while the

CD method has 3 parameters to calibrate (ac , ar , θcr ). The Hock method will not be compared

for the single point analysis because its performance has been demonstrated elsewhere (Kling
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et al., 2006; Viviroli et al., 2009) and assessing its performance against the new TD method is

relevant only for distributed melt simulations (for which the method has been developed).

Data from the 2007 hydrological year (Nov 2007 to Oct 2008) are used for calibration and data

from the 2008 hydrological year are used for validation.

5.4.2 Distributed point analysis

The objective of the distributed point analysis is to investigate how the CD, TD and Hock

methods emulate the temporal evolution of available melt energy as a function of hourly

temperature and, in the case of the Hock method, as a function of potential radiation and

temperature. To assess the behavior of the three methods, the potential melt that would be

obtained with each method if the available snow was not limiting, is compared against a

reference potential melt series. This reference series is compiled by applying Eq. 5.2 with ac

equal to 3 (mm day−1 ◦C−1) (which is an average value for such environments, e.g. Hock, 2003;

Pellicciotti et al., 2005) using actual observed radiation at all the meteorological stations. The

reference melt is then averaged over the stations.

To investigate how the methods perform for different dominant expositions, three different

experiments are conducted: Experiment 1 includes all meteorological stations; Experiment

2 includes only the southwest facing stations; and Experiment 3, only the southeast facing

stations. Given that the CD, TD and the Hock methods do not consider actual radiation,

they do not simulate the same amount of potential melt as the reference simulation if run

with the same degree-day factor (3 mm day−1 ◦C−1). To obtain a meaningful comparison

between the temporal evolution of the different potential melt simulations, the parameters

of the CD, TD and Hock methods are, thus, calibrated such as to fit as closely as possible the

reference simulation (the calibration criterion is the SSE). The CD method has 1 parameter to

calibrate (ac ), the TD method has 2 parameters to calibrate (ac , β) and the Hock method has 1

parameter to calibrate (ai ) (refreezing factors are not applicable due to the high temperatures

during the simulation period). The performance of the three melt methods with respect to the

reference simulation is evaluated, for each experiment, by comparing the simulated, potential

cumulated snowmelt and the reference potential cumulated snowmelt.

5.4.3 Catchment-scale analysis

Input interpolation

Spatial interpolation of ground temperature and precipitation measurements is performed

through kriging with external drift (KED) (using elevation as auxiliary information) (Goovaerts,

1997). Previous studies in similar environments have shown the adequacy of regression-based

approaches (see Chapter 3 of this thesis), particularly when high-elevation station data are

available to validate data (Goovaerts, 1999; Stahl et al., 2006; Tobin et al., 2011).

Data from the distributed meteorological stations in the two groups (southeast and southwest
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Chapter 5. Improving the degree-day method for sub-daily melt simulations

facing) in the Dranse de Ferret catchment were initially analyzed to detect correlations between

temperature and the measured meteorological variables between the groups. Temperature

distributions along the vertical direction for each group are controlled solely by elevation

gradients in the study period; after removing the elevation effect, all the stations show a mean

temperature of 13 ◦C at the reference elevation of 1780 m a.s.l. In effect, the use of elevation as

the external drift factor for the KED interpolation seems fully justified.

The radiation is spatially distributed as follows: first, the potential radiation for each DEM

grid cell is computed according to the method proposed by Hock (1999), which is based on

topography (local aspect and slope), solar positioning and geographic location; subsequently,

these values are rescaled (at an hourly time step) to match the incoming shortwave radiation

measured at the stations (see as an example, Figure 5.5). This rescaling procedure takes

into account the effect of cloudiness (which decreases the incoming solar radiation) while

preserving, however, the spatial structure of the incoming radiation field.
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Figure 5.5: Mean measured, potential and corrected potential radiation for all 10 non-glacier
Sensorscope stations.

Initial conditions

A distributed, initial snow height is determined based on a theoretical snowpack model

that gives the annual evolution of the snowpack as a function of the mean annual values of

temperature and precipitation and their seasonality and uses a CD snowmelt formulation

(Woods, 2009). Such a simple model distributes the mean snow height for a given time of year
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as a function of altitude (by simply distributing the mean annual temperature as a function

of altitude). In the context of the present study that analyzes simplified snowmelt models,

such a rough estimate of how snow height at the start of the modeling period (June) might

vary with altitude is assumed to be sufficient. For more comprehensive methods to calculate

the gradient of snow depth with elevation see (Gruenewald and Lehning, 2011; Lehning et al.,

2011). The resulting initial snow heights have a minimum of 355 mm (water equivalent, w.e.)

for the lowest source area at a mean altitude of 1,890 m asl and a maximum of 1.2 m w.e. for

the highest source area at a mean altitude of 2,745 m asl.

This initial snowpack height is imposed in order to simulate an early stage of the melt period

when there is still a significant influence of the snowpack contributing to runoff. This approach

is used to demonstrate the evolution of the snowpack from the beginning of the spring melt

season (rather than at the time of observations, June through October). The retained initial

snow distribution can be assumed to reasonably reflect what could have prevailed earlier in

the melt season; this assumption is supported by the findings of Simoni et al. (2011), which

indicated that the snowmelt stemmed from well-distributed source areas and was a dominant

discharge component.

5.4.4 Hydrological model set-up

A total of 89 source areas were identified for the Dranse de Ferret catchment (see inset of

Figure 5.1). Based on the spatial input fields, each subcatchment was assigned an area-average

precipitation time series and a temperature time series. To compare the performance of

the melt methods at the catchment-scale, each of the methods were combined with the

precipitation-runoff model described in Section 2.5 of this thesis. For each model, the pa-

rameters were calibrated such that the simulated discharge follows as closely as possible the

reference discharge (see details hereafter).

The reference discharge series for such a calibration is usually observed discharge; for our

particular case study, however, we could not use observed discharge directly because spring

discharge measurements could not be collected given the risk of avalanche at the experimental

catchment. We, thus, generated a reference discharge time series for comparison purposes as

follows: The distributed temperatures and precipitation fields, the previously discussed initial

snow heights and the distributed, corrected radiation field (see Section 5.4.3) were used as

inputs. A parameter set was then selected (within a literature-based prior range, see Table 5.1)

based on its ability to provide reasonable temporal discharge dynamics. The actual observed

discharge, while being on a different scale due to lower initial snow heights, was assumed to

accurately describe the actual dynamics of the discharge in terms of the coefficient of variation

(CV) (hourly discharge variance divided by the hourly mean). Accordingly, the parameter set

was chosen such that the CV of the simulated discharge was as close as possible to the CV of

the observed discharge. The observed discharge CV is 0.6 and the selected parameter set (see

Table 5.1 provides a discharge with a CV of 0.64 (-).
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Table 5.1: Reference hydrological model parameters for Monte Carlo simulation. Note that
for the catchment-scale analysis, all temperatures were always positive (i.e. no refreezing
occurred)

Soil Model
V alue uni t

Porosity, η 0.5 [-]
Active soil layer depth, Zr 300 mm
Soil moisture threshold, s∗ 0.3 [-]
Soil moisture at wilting point, sw 0.05 [-]
Saturated hydraulic conductivity, ksat 20 mm h−1

Clapp and Hornberger exponent, c 12.8 [-]
Initial soil moisture , so 0.45 [-]

Routing Model
Surface discharge residence time 2 h
Subsurface discharge residence time 20 h
Wave celerity 1 m s−1

Dispersion coefficient 1000 m2 s−1

As shown in Figure 5.3, the corresponding reference simulation shows a dynamic very similar to

the observed discharge, in terms of daily discharge cycles and a decreasing amplitude towards

the end of the melt period, which is typical for high mountainous spring snow discharge

(Herrmann and Rau, 1984). In addition to this reference simulation, we also retained a range

of plausible simulations by using Monte Carlo analysis to randomly generate a high number

of parameter sets from a uniform distribution spanning the prior parameter range. These

additional plausible simulations were selected by retaining the 50 simulations that most

closely match the reference series (based on the SSE). These simulations show a range of

possible discharge behaviors around the reference discharge time series (see light red shaded

regions around the reference series in Figure 5.6).

Once this reference series was established, we calibrated the parameters of the three models

(i.e., the combination of CD, TD and Hock melt methods with the precipitation-runoff model)

on the reference series using again a Monte Carlo analysis. The resulting discharge profiles

were compared to the reference time series. Acceptable simulations were chosen based on

two performance indicators: 1) the Nash-Sutcliffe efficiency, NSE, (Nash and Sutcliffe, 1970)

and 2) the percentage of time steps, %TimeBound where the simulated discharge falls into the

range of plausible reference simulations (see performance indicators in Figures 5.6 and 5.7).

Again, rather than retaining a single best parameter set, we retained 50 sets that have a NSE ≥
0.7 and %TimeBound ≥ 80%. This provided a range of behavior for the discharge simulation

(see Figure 5.6). Through this Monte Carlo calibration procedure, we ensure that the melt

methods work with an ensemble of parameter sets which yield reasonable sub-daily discharge

variability.
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Figure 5.6: Catchment scale analysis: The reference (red) with plausibility range (rose) and
simulated discharges (grey) for case study 1 (all 10 stations) for a) the calibrated CD method, b)
the calibrated TD method and c) the calibrated Hock method. Discharge time series that have a
NSE ≥ 0.7 and ≥ 80 % of time steps which fall into the range of plausible reference simulations
(except for a) are shown. Best parameter sets gave the following NSE and %TimeBound
respectively: a) 0.78, 79% a) 0.88, 89% and b) 0.85, 83%.
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Figure 5.7: Catchment scale analysis: The reference (red) with plausibility range (rose) and
simulated discharges (grey) for case studies 2 and 3 (5 stations in either group): a) the calibrated
Hock method for west-facing stations, b) the calibrated TD method for west-facing stations,
c) the calibrated Hock method for east-facing stations and d) the calibrated TD method for
east-facing stations. Simulated discharge time series that have a NSE index ≥ 0.7 and ≥ 80 %
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Best parameter sets gave the following NSE indices and percentage of time steps respectively:
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Similar to the distributed point analysis (comparing potential melt), the above procedure is

repeated with three numerical experiments to assess the impact of temperature distributions

on the ability of the different snowmelt methods to approximate the reference discharge time

series. Each of the experiments corresponds to a different scenario of measured temperature

inputs: Experiment 1) the whole dataset; Experiment 2) only stations belonging to the south-

west facing group; and Experiment 3) only southeast facing stations. The reference series

generation procedure and the ensuing model calibration process yield for each experiment,

i) a reference series and its plausible range and ii) 3 ensembles of acceptable simulations

corresponding to each of the 3 precipitation-discharge models.

5.5 Results and discussion

5.5.1 Point analysis of melt methods

The calibrated parameter values for the CD method are ac =3 mm day−1 ◦C−1, ar =0.8 (-) and

θcr =0.025 (-). For the TD method, the degree-day and refreezing factors are the same while

θcr =0.015 (-) and the calibrated amplitude factor β equals 0.18 (-). Figure 5.8 shows that the

CD method cannot capture the strong, diurnal melt variations for either the calibration or

validation case. The TD method performs slightly better for the 2007 event and significantly

better for the 2008 validation event where most of the peaks are captured. If viewed alongside

the temperature time series it is evident that the TD method is the most effective when there

is a significant range in the daily maximum and minimum temperatures such as during the

2008 spring event. This result implies that when the temperature differences are greatest,

the amplitudes imposed in the TD method are better able to mimic the effect of incoming

radiation on snowmelt.
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Figure 5.8: Point scale analysis (Cotton Creek): a) Temperature time series for the 2007 calibra-
tion event (left) and the 2008 validation event (right). Simulated versus measured snowpack
outflow for b) the CD method and c) the TD method.

An important point to note for this analysis includes that the temperature drops frequently

below zero (unlike the Dranse de Ferret catchment-scale analysis), so it was necessary to have
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a proper calibration of the refreezing factor ar . Overall, the point scale experiment shows

that the proposed TD method represents a considerable improvement over the CD method

without using any additional data, only at the cost of one additional calibration parameter.

Furthermore, using the CCEW dataset, a temperature sensitivity analysis was conducted to

demonstrate the impact of non-ventilated temperature sensors on the TD and CD methods.

Huwald et al. (2009) demonstrated a systematic bias with some temperature sensors due

to trapping of heat in the temperature shield. The temperature error is proportional to the

incoming shortwave radiation times albedo or the outgoing shortwave radiation. It is inversely

proportional to the wind speed. The analysis demonstrated that a 2 ◦C bias in maximum daily

temperatures on dry days impacts both the CD and TD methods by overestimating melt rates

each time step where the temperature error has a stronger impact on the TD method. It is

therefore recommended to use the TD method with ventilated temperature sensors, such as

those used with standard meteorological service stations.

5.5.2 Distributed point melt analysis

Potential snowmelt is compared for the three different experiments of temperature distribu-

tions (Section 5.4.2). As previously mentioned, the ’reference’ snowmelt is the melt that can

be potentially produced with Eq. 5.2 with measured incoming radiation (instead of potential)

at the given stations. In Experiment 1, using temperature observations from all stations, the

potential melt for the CD, TD and Hock methods are compared with the reference melt series.

If the degree-day factors are not calibrated, the Hock method clearly models the reference

melt more accurately, as illustrated in Figure 5.9a showing the cumulated melt for all methods

over the entire simulation period. This shows that overall, the Hock method simulates the

potential melt that would be obtained with observed radiation quite well; in other words, the

fact that the Hock method uses potential radiation does, for this experiment, not lead to large

deviations from the reference.

Subsequently, the degree-day factors of all three methods are calibrated such as to produce

exactly the same amount of potential melt as the reference series at the end of the entire

observation period (Figure 5.9b). The potential melt generated by the calibrated Hock method

is still closest to the reference series where the potential melt generated with the CD and the

TD methods seems unable to follow the reference series. This result is due to the length of the

observation period, including the very warm conditions in early summer. If only the early part

of the observation period, which is effectively relevant for snowmelt, is considered (around 22

days), the CD and TD methods are able to reproduce the reference series as well as the Hock

method (see the inset on Figure 5.9b). The coefficients of determination (R2 values) of the

potential melt generated by the Hock, the TD and the CD methods versus the reference melt

are 0.9, 0.9 and 0.8 (-) respectively.

The results are similar for Experiments 2 and 3 (Figure 5.10) but with one important difference

between the methods: for the CD and the TD method, the calibrated value of ac remains
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Figure 5.9: Distributed point analysis: a) The reference potential cumulated melt, the melt
calculated by the uncalibrated CD, TD and Hock methods. b) Calibration of the CD, TD and
Hock methods in terms of matching the reference potential melt series (cumulated over the
entire observation period, 111 days). The inset shows the same result for calibration over the
first 22 days.

constant throughout all experiments (at 6.9 (mm day−1 ◦C−1) whereas for the Hock method,

the calibrated degree-day factors are 7, 6.8 and 7.2 for Experiments 1, 2 and 3 respectively.

The CD and TD methods are thereby more robust with a consistent degree-day factor for all

temperature distributions. Conversely, the Hock method is highly sensitive to the dominant

aspect of the meteorological observations since it requires different degree-day factors to

reproduce the reference potential melt series from different station groups.
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Figure 5.10: Distributed point analysis: Potential melt for either the southeast or southwest
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Furthermore, for Experiments 2 and 3, the calibrated CD, TD and Hock methods demonstrate

that there is a clear difference in potential melt when either station group is considered (i.e.,

southeast versus southwest). This result underlines the importance of having good estimates

of spatial temperature variability (and namely of lapse rates) to produce good results with

degree-day-based melt methods.

The sub-daily variability in simulated melt rates for all three methods is compared in Figure

5.11a, which shows for each day of the simulation period and for all methods, the daily mean

melt and the maximum and minimum values (for Experiment 1). It can be seen that the daily

mean values are quite close to the reference series for all three methods. The daily amplitude,

however, is strongly underestimated by the CD method, which confirms the results of the

single point analysis. Experiments 2 and 3 show similar results (not shown).

Figure 5.11b shows a comparison of the daily minimum and maximum melt for the TD

method and the reference potential melt. The diurnal, time-varying degree-day factor of

the TD method provides an improved means to capture the daily minimum and maximum

values of the reference melt. Most significantly, this figure as well as the inset in Figure 5.9b

showing cumulated melt over the 22-day measured melt period, demonstrate that imposing

this variability causes the TD method to have a better fit to the reference melt in terms of

diurnal pattern. RMSE (root mean square error) values are reduced by moving from the CD

method to the TD method; the error for the daily maximum melt over the time series relative

to the reference melt is reduced from 2.2 to 0.7 mm h−1. Similarly, the RMSE for the minimum

melt is reduced from 6.8 to 0.9 mm h−1.

5.5.3 Catchment-scale analysis

Preliminary path probability analysis

To illustrate the effect of the source area delineation within the hydrological model, proba-

bilities of flow paths from selected source areas generated by the reference simulation (see

Section 5.4.4) were analyzed. Figure 5.12 depicts four examples of source areas with contrast-

ing mean slopes, areas, elevations and aspects and their corresponding ’path probability’, i.e.

the probability that this source area is activated (through snowpack outflow and rainfall) as a

function of time.

It can be seen that the path probability is influenced by the area, elevation, slope and aspect of

the source area. Intuitively, the greater the source area is in size (Figures 5.12a and 5.12c), the

longer this area has an impact on the equivalent precipitation (snowpack outflow and rainfall).

Source areas at higher altitudes (Figure 5.12c) have a higher path probability later in the melt

period, i.e. they have a higher probability to be activated later in the season, which simply

results from the deeper snowpack at higher elevations. Similarly, melt from north-facing areas

(Figures 5.12b) is activated later than melt in south-facing areas (Figures 5.12d) due to less

frequent exposure to incoming radiation.
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Figure 5.11: Distributed point analysis: a) Potential daily melt variability for the reference
melt, the calibrated CD method and the calibrated Hock method. RMSE values compare the
minimum and maximum daily melt between the CD and reference cases. Daily mean melt
is indicated by the dashed lines. b) Ranges of daily minimum and maximum melt for the
reference melt (blue line) and the calibrated TD method melt (shown in green). RMSE values
compare the daily minimum and maximum melt between the TD and reference cases.
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Figure 5.12: Time changing path probabilities, (i.e., the probability that the source area is
activated through snowpack outflow and rainfall as a function of time) for specific source areas
for the melt period considered. The locations of these source areas; their mean elevation (elev),
slope (slp), area and aspect (asp) are given as insets. The cumulated distribution function is
shown on the right y-axis.

Comparison of the melt methods

For the catchment-scale analysis, each of the three melt methods is used to generate the

equivalent precipitation used in the hydrological model with either all meteorological stations

(Experiment 1) or either the southeast or southwest facing groups as input data (Experiments

2 and 3 respectively). Hereafter, we first present an analysis of the spatial results, followed by

an analysis of the discharge time series.

The differences in spatial melt are analyzed for the melt methods using a uniform snowpack

input for visualization purposes for Experiment 1, after calibrating all parameters according

to the method described in Section 5.4.4. Figure 5.13 shows all methods’ distribution of

snow heights after 200 hours of simulation and the snow height remaining after 200 hours as

produced by the measured radiation (the reference melt series). It can be seen that, spatially,

the CD and TD methods better capture the reference melt. The Hock method predicts more

extreme melt rates throughout the catchment, which can be explained by this model’s proven

sensitivity to temperature extremes (Pellicciotti et al, 2005), which is evident on a pixel basis.

As already demonstrated in all previous analyses, the CD method cannot be calibrated such

as to capture the sub-daily melt amplitudes of the reference discharge. The catchment-scale

analysis confirms these results as depicted in Figure 5.6a where the CD simulated discharge

times series appears to be smoother than the reference discharge (red solid line) and its

plausibility range (light red shaded region). In contrast, with the calibrated TD method as well
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Figure 5.13: Distributed point analysis: distribution of snow heights (mm) from a uniform
snowpack initialization after 200 hours of simulation for: a) the reference melt case, b) the
calibrated CD method, c) the calibrated Hock method and d) the calibrated TD method.
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as the calibrated Hock method, the reference series is very well captured (Figure 5.6b, c).

Overall, both the TD and Hock methods perform comparably well even if local differences are

visible (e.g. the Hock method performs less well for the late rise of discharge but in exchange it

captures better earlier peaks). However, in absolute terms, the TD method shows better Nash-

Sutcliffe indices with respect to the reference discharge and a greater percentage of discharge

simulations which fall into the range of plausible reference simulations (see performance

indicators in Figure 5.6). It is important to note that the size of the Dranse de Ferret catchment

is critical to note the strong diurnal fluctuations visible in Figure 5.3. If a larger catchment had

been studied, this variability would most likely have been smoothed out (Beven and Wood,

1993).

Moreover, it should be recognized that the reference discharge series might be biased towards

one or the other of the studied methods. On one hand, the reference series lends itself to

be similar to the TD method discharge because both methods consider the actual, physical

conditions, and incoming radiation and temperature have a close relationship as noted by

Ohmura (2001). The TD method is also more coherent with the well-known physical relations

between minimum and maximum temperature, radiation and melt (Walter et al., 2005). On

the other hand, the method proposed by Hock is used to distribute the measured radiation

across the catchment and in effect, the reference discharge can also be seen to be biased

towards the Hock method in the distributed case. In spite of the possible biases towards

the reference case, the comparison of the calibrated TD and Hock method for Experiment 1

leads to the conclusion that considering all temperature observations, both methods perform

equally well.

Clear differences between the two methods become visible in Experiments 2 and 3 (Figure

5.7). If the temperature distribution data come from only the southwesterly facing group,

the discharges are initially higher for the Hock method. A distribution of high mean tem-

peratures attributed to the shallower lapse rates seems to be biasing the Hock melt method.

Consequently, the Hock method provides an over-estimation of melt in the main peak hours

(hours 75-250) and an underestimation in the lower peak (hours 450-525) without being able

to capture the variability in the recession part of the discharge curve.

In contrast, for Experiment 3, the east-facing case, the results for both methods are comparable

qualitatively even if the Hock method outperforms the TD method in terms of having a greater

percentage of simulations which fall into the range of plausible reference simulations and the

Nash index (See performance indicators in Figure 5.7). It is interesting to note that the refer-

ence discharge generated by using only the east-facing stations as input contrasts significantly

from the reference discharge for the case of using all ten stations. Such a contrasting behavior

indicates that the steep, mean lapse rate for the group of east-facing stations generates more

variable mean temperatures and makes the discharge behavior quite different. In conclusion,

results from Experiments 2 and 3 confirm the sensitivity of both melt methods to the spatial

distribution of temperature, but the TD method appears, once again, to be more robust.
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In terms of applicability of these melt methods, the Hock method has the major advantage

that high resolution digital terrain models are now almost universally available; however, there

are some open questions with regard to the performance of this method as a function of

available temperature observations. Regarding the performance of the proposed TD method,

it obviously depends on the quality of spatially distributed estimates of daily minimum and

maximum temperature. Fortunately, minimum and maximum temperature observations

can be quite wide-spread. For example, in the United States maximum and minimum ther-

mometers have been widely installed due to their low cost and reliability (Quayle et al., 1991).

Accordingly, both methods have their specific utility for different types of applications.

Finally, it should also be emphasized that the sub-daily degree-day factor variability could

also be obtained by directly relating the daytime degree-day factor to the daytime hourly tem-

perature and by imposing a constant mean value during nighttime. Such an approach would

present two main differences with the proposed TD method: the resulting degree-day factor

would have significantly less smooth sub-daily variability and its daily mean would fluctuate.

Overall, this might result in too strong a variability of the simulated melt. Additionally, if this

methodology is applied to hydrological models already using the classical degree-day ap-

proach, replacing the calibrated (constant) degree-day factor with a factor having a fluctuating

daily mean value might lead to unforeseen effects on the model performance. As the goal of

the proposed method is to impose physically-based variability around calibrated degree-day

factors, the development and performance assessment of such a direct-temperature approach

is left for future research.

5.6 Conclusions

The proposed quasi-sinusoidal function for the sub-daily variation of the degree-day factor

requires only observed daily minimum and maximum temperatures as input, which are

widely available. The main findings of the presented model performance comparisons are

summarized hereafter:

• The point analysis at the Cotton Creek Experimental Watershed (CCEW) (Canada)

demonstrates that the proposed quasi-sinusoidal function for the degree-day factor

captures the sub-daily melt variability significantly better than a constant degree-day

factor as in the classical degree-day (CD) method.

• The distributed point analyses at the Dranse de Ferret experimental catchment (in the

Dranse catchment) indicate that, at the point scale, the proposed time-variable (TD)

method and the Hock method have relatively equal performances in terms of generating

potential melt, i.e. both methods capture the temporal distribution of available melt

energy in a very similar way. The performance of the potential radiation-based Hock

method demonstrates that this method clearly adds variability. However, the corre-

sponding variability imposed by the TD method is more physically-based and appears
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to be less sensitive to temperature distributions. These results suggest that additional

analyses with distributed meteorological observations can help to further understand

how well the snowmelt methods perform as a function of exposition.

• Furthermore, the distributed point data analyses underline that degree-day snowmelt

models, which strongly rely on temperature information, require a good representation

of the spatial variability of temperature (realistic lapse rates) to correctly model the

spatial variability of snowmelt.

• In terms of catchment-scale discharge simulation, the presented results for the Dranse

de Ferret catchment suggest that the TD method might outperform the potential

radiation-based Hock method in terms of spatial variability of hourly snowmelt. Given

that the TD method assigns degree-day factors directly at the subcatchment scale rather

than at the grid-scale (Hock method), the TD method has, in particular, the advantage

of maintaining realistic diurnal melt variations at the scale of an entire hydrological

system, which smoothes out, to some degree, small scale variabilities.

Overall, the TD method, based solely on daily maximum and minimum temperature data,

proves to be a robust, minimalist approach to provide a suitably accurate snowmelt response

for spatially-explicit hydrological models with different degrees of spatial lumping. It, thus,

represents a valuable approach for a wide range of hydrological modeling applications in

high mountainous environments which are limited in data and require sub-daily snowmelt

computations.
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Chapter 6
A fit-for-purpose uncertainty approach

for Alpine hydrological model

calibration

Skepticism should be embraced – not

ridiculed. There is much about the

climate yet to be revealed, and science

unexposed to intense challenge is

unreliable.

William Stewart, Author ‘Climate of

Uncertainty’

6.1 Introduction

The role of environmental models is to break down natural, physical processes into a sys-

tem of equations which can provide verifiable predictions about hypotheses. However, it

has long been recognized that there is an inherent amount of uncertainty associated with

environmental processes (Chamberlin, 1890). Uncertainty and imperfect representations of

environmental, physical systems generally stems from limited knowledge on physical pro-

cesses (i.e., epistemic uncertainty) and/or from natural variability (some processes such as the

weather or subsurface flow paths have random characteristics) (Montanari, 2011). Input data

uncertainty (such as the interpolation of precipitation and temperature) is a also a large source

of hydrological modeling error (Hrachowitz and Weiler, 2011; Hudson and Wackernagel, 1994;

Kavetski et al., 2006). Similarly, model parameter uncertainty is common due to the difficulty

in measuring some parameters values in the field or laboratory (Fleming et al., 2010). An
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equally significant source of error is operational uncertainty (Bérod, 2009; Montanari, 2011). In

the case of flood forecasting, interpretation of output ensembles is a challenge with Numerical

Weather Prediction ensembles (Cloke and Pappenberger, 2009). Operators need to understand

that ensemble outputs must be flexible according to new observations, climate evolution,

and socio-economical modifications (Bérod, 2009). Only by having adaptable, yet reliable

hydrological predictions can operators effectively and confidently interpret result ensembles

for decision-making.

6.1.1 Background: Uncertainty approaches

Research on how to quantify uncertainties in the environmental field has existed for more than

three decades (Spear and Hornberger, 1980). In the particular field of hydrological modeling,

in spite of years of trial and experience, an on-going debate exists regarding what constitutes

an appropriate representation of uncertainty. The general disagreement stems from whether

a proper statistical context is necessary to summarize parameter and predictive distributions.

There are two broad views on using statistics or probability theory for representing uncertainty:

the frequentist or Bayesian view. Frequentists maintain that the primary cause for uncertainty

is randomness so that probabilities represent the likelihood of outcomes that could happen

if it is possible to take a large number of samples over all possible outcomes. The relative

occurrence of any particular event, i.e. its relative frequency, converges to a limit as the

number of repetitions of the experiment increases.

In contrast, Bayesians relax this assumption by recognizing that prior estimates of probabilities

can be used as an input to estimating probabilities. Based on the formal likelihood framework

theorem originally proposed by Bayes (1763), probabilities of an event can be introduced

as a measure of the degree of belief that the subject has in the truth of the statement. In

practical terms, the idea is to assign a probability to any event on the basis of the current state

of knowledge and to update prior probabilities in light of new information. Effectively, Bayes

Theorem states that given a set of feasible models M and observations O, the probability of

any models M given observations O is:

P (M |O) = P (M)P (O|M) \C (6.1)

where P (O|M) is the likelihood of simulating the observations given the model, P (M) is a

prior probability for all feasible models and C is a scaling constant used to ensure that the

cumulative of the posterior probability density P (M |O) is unity. Bayes theorem uses the prior

probability density to calculate the posterior density by incorporating new evidence with each

time step (Beven, 2009). In this approach, the likelihood is directly connected to the prior

probability density of the observations, conditional on the knowledge of the parameters that

identify a specific model (Mantovan and Todini, 2006).

Unlike statistically-based methods, uncertainty in hydrological modeling is also commonly
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treated with fuzzy approaches when assuming uncertainty is non-random and can either be

attributed to a lack of information or conflicting information (Beven, 2009). Fuzzy sets, intro-

duced by Zadeh (1965), define a set of objects without clear boundaries or precisely defined

characteristics to estimate the possibilities of potential outcomes (rather than probabilities).

A fuzzy set application is considered a complement to statistical methods when considering

expert knowledge, ‘soft’ information or qualitative measures of performance (Bárdossy, 2005).

A classic example of a fuzzy set could be the number of days with ‘heavy rain’ where ‘heavy’

is based on human judgement rather than a precise, quantitative threshold. In fuzzy theory,

ranges rather than thresholds are provided to define ‘best’ estimates. For example, a triangular

fuzzy number is commonly applied in hydrological modeling contexts where a membership

value of one is assigned to the most likely value, zero to the lowest and highest possible values

and a linear membership function is assumed between these values.

6.1.2 Formal Bayesian methods

The fundamental advantage of Bayesian, formal methods is that with a proper probability

density function and reliable information content, a predictive distribution of the hydrological

response can be generated and used for accurate uncertainty estimation. Furthermore, formal

methods provide a means to quantify the various error sources associated within hydrological

modeling systematically (Vrugt et al., 2009). Attempting to separate and quantify individual

error sources can be necessary for improving specific aspects of hydrological models.

Examples of well-known formal approaches in the field of hydrology include the BATEA

approach, the Bayesian Forecasting System (BFS), the Meta-Gaussian approach and the

DREAM method. The BATEA (Kavetski et al., 2006) method explicitly accounts for input

uncertainty associated with poor precipitation forcings. Precipitation errors are assumed

to take a multiplicative Gaussian form and a rainfall multiplier approach is used to adjust

the precipitation depths. Similarly, the BFS approach, developed by Krzysztofowicz (1999),

assumes that input precipitation is the largest component of uncertainty and additionally

assumes that hydrological modeling uncertainty is the aggregation of all other uncertainties.

The method produces probabilistic river stage forecasts through probabilistic precipitation

forecasts by using input and process uncertainty processors. A technique which was adopted

by BFS is the Meta-Gaussian approach (Montanari and Brath, 2004) which uses statistical

inference in the Gaussian domain by using the Normal Quantile Transform (NQT). This

approach estimates the probability distributions of runoff simulation errors conditioned

by the value of flow by assuming the forecast error is a stationary and ergodic stochastic

process (i.e., it has statistical properties that can be deduced from a long sample of the

process) (Hostache et al., 2010). Another approach is the DREAM method (Vrugt et al., 2009).

This method is based on the well known Shuffled Evolution Metropolis (SCEM-UA) global

optimization algorithm and uses a Monte Carlo Markov Chain (MCMC) scheme to provide a

Bayesian estimate of global uncertainty on the hydrograph output of hydrological models.
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The MCMC technique is a common method to randomly sample the feasible parameter space

with Monte Carlo (MC) simulations for hydrological modeling. MC simulation is a method

of exploring the response surface in a high-dimensional model space (i.e., for models with

multiple parameters) as an alternative to discrete sampling. Common to all formal methods is

that each likelihood function (or objective function to be minimized or maximized) forms a

response surface when enough Monte Carlo simulations are performed. The MCMC technique

involves concentrating sampling around high likelihood (or well-performing) regions of the

likelihood surface. This form of intelligent sampling ensures greater efficiency than a random

search and ensures that the likelihood response surface is well-represented. Most importantly,

the method produces a posterior distribution of predictions associated with the likelihood

surface.

Disadvantages of formal Bayesian methods include that many of the simplest and most

straight-forward approaches assume that the measurement errors are mutually independent

(uncorrelated). However, in hydrologic modeling, errors are often non-stationary and show

autocorrelation (Vrugt et al., 2009). More complex models such as those using autoregressive

schemes are able to account for heteroscedasticity (i.e., changing variance) or correlation in

errors (Schaefli et al., 2007; Yang et al., 2007; Vrugt et al., 2008), however, these methods are

not trivial to implement in data sparse contexts or operational environments. Additionally,

in practice it is quite difficult to identify and quantify individual error sources because input,

parameter and structural error typically interact strongly through model processing (Beven,

2009; Montanari, 2011). Finally, from a philosophical standpoint, formal methods assume

that epistemic uncertainties can be represented as if they were random in nature (Beven et al.,

2012), so that the sources of error for data are limited to random error. This is often not the

case when observable measurements are scarce in complex systems such as mountainous

regions because error directly stems from a lack of verifiable data.

6.1.3 Informal methods

In contrast to formal statistical methods, informal methods do not require a full treatment of

uncertainties and detailed data validation to define prior probability distributions. Informal

likelihood measures, which are based on hydrological modeling experience, are generally

used so that model properties are not falsely assumed (e.g., linear relationships approximated

with nonlinear ones and vice versa) (Gupta et al., 1998) and to not overestimate information

content in error residuals that may not have a consistent stationary structure due to the many

sources of uncertainty (Beven, 2009).

The most applied, informal likelihood method to assess parameter uncertainty and numeri-

cally estimate hydrologic prediction uncertainty is the Generalized Likelihood Uncertainty

Estimation (GLUE) approach (Beven and Binley, 1992). GLUE is based on the set of accept-

able or ’behavioral’ models, weighted by a measure of probability (likelihood), which reflects

the performance of each model in the set during calibration. An assessment of uncertainty
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arising from parameter uncertainty is provided by the probability distribution of all likelihood-

weighted model outputs (Hostache et al., 2010). The probability distribution enables an

implicit handling of residuals, and an appropriate hydrologically reasoned likelihood is used

in testing hypotheses.

As in the case of GLUE and other non-probabilistic methods, multiple simulations facilitate

local and global sensitivity analyses that can be used to determine the most important pa-

rameters in controlling uncertainty in model output. Ranges in sensitivity are provided by

sampling the response surface and conditioning the model to find behavioral models.

Contrary to the concept of finding an optimal model, the GLUE approach accepts the idea of

equifinality; model users have an imperfect knowledge of a system, so an ensemble of models,

parameters and variables are considered equal or almost equal simulators of the system. This

idea is in direct contrast with optimization schemes because a global maximum (or minimum)

is not sought. Rather, the likelihood surface is assumed to have multiple minima or maxima.

As Fleming et al. (2010) states, "the error landscape is not a well-defined and localized crater,

but instead a field of craters of approximately equal depth." Such a landscape, characteristic of

hydrological modeling output, does not make finding a global optimum robust to the impact

of factors such as the choice of likelihood, the realization of errors or the period of calibration

data.

A primary advantage of the GLUE method is that it can be easily used with sparse data

sets. Furthermore, it has been found to be easy to implement and use while providing good

estimates of total streamflow uncertainty relative to statistical methods such as the formal

MCMC DREAM method (Vrugt et al., 2009). The GLUE method also considers epistemic

uncertainty in addition to aleatory uncertainty to provide a range of plausibility for discharge

simulations.

Disadvantages of the GLUE method include the subjectivity in deciding which given set of

parameters is acceptable (‘behavioral’) based on subjective thresholds assigned to likelihood

measures. Using less formal likelihood measures in GLUE prevents the formulation of precise

distributions (limited by computation time) of the observable variables (i.e., the method is not

probabilistic in the sense of providing P (O|M) as in Equation 6.1). Not explicitly accounting

for the errors can make the learning process to condition the model to which parameter sets

are behavioral less efficient. Another disadvantage is that without a formal representation

of the structure of errors as a component of the model, it is not possible to distinguish the

different components of the total error (Vrugt et al., 2009).

6.1.4 Likelihood measures and multi-criteria performances

To reduce the subjectivity of informal likelihood measures, studies have tried to quantify limits

of acceptability based on observations; By defining limits of acceptability based on discharge

observation errors, Liu et al. (2009) account for input error implicitly, most notably uncertainty
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in the rating curve. Others have included ‘soft’ data such as monthly water balances (Seibert

and McDonnell, 2002; Winsemius et al., 2009) to define quasi-objective limits of acceptability.

Additional information has also been used to more accurately describe fuzzy performance

measures in terms of effective water table dynamics and flood inundation predictions (Freer

et al., 2004; Pappenberger et al., 2007) respectively.

The choice of likelihood measure is also under debate, particularly with informal methods

of uncertainty analysis. In the presence of an imperfect model, a calibrated model will tend

to best match the hydrograph behavior it is calibrated to fit (such as the peak). However, the

calibration of rainfall-runoff models is inherently a multi-objective problem (Gupta et al.,

1998) because different parameter sets may capture the best performances for contrasting

hydrograph dynamics such as base flow, time to peak, and discharge recession. However,

there is no consensus amongst uncertainty experts whether a particular combined criterion

exploits all the necessary information provided by individual criterion.

Numerous codes exist to use multiple criteria and choose a Pareto optimal parameter front

which attempts to exploit the information provided by all criteria and limit a trade-off among

performance measures (Gupta et al., 1998; Yapo et al., 1998; Vrugt et al., 2003). The issue

with Pareto optimal search is that an improvement in one likelihood measure can lead to a

poor performance with another likelihood. Also, in spite of Pareto optimization providing a

frontier of acceptability where none of the performance measures can be further improved ,

as with optimizing single criterion, acceptable models on the Pareto front can change when

calibrating with a different event or using different forcing inputs (Beven, 2009). As a result,

Pareto optimization can lead to the faulty rejection of good performing models just behind

the Pareto front which are more robust to changing inputs.

6.1.5 Uncertainty estimation technique and tool

In the present case, due to inherent errors associated with sparse measured inputs and sim-

plified hydrologic processes as a result of operational constraints, an informal method has

been adopted. Using an informal likelihood approach prevents the misrepresentation of

model sources of uncertainty by avoiding the need to be explicit in error estimation. Also,

this procedure accounts for potential errors most certainly associated with area-averaged or

interpolated meteorological inputs (Hingray et al., 2010; Tobin et al., 2011).

In light of the progress in the uncertainty assessment techniques aforementioned, the goals of

this work are three-fold;

The first goal is to propose a ’fit for purpose’ (Beven et al., 2012) uncertainty estimation

procedure using the assumption of multiple working hypotheses to provide a plausible range

of simulations which captures the hydrologic dynamics of catchments, focusing on flood

events.

The second goal is to constrain the uncertainty of hydrological model inputs and processes by
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incorporating variable temperature gradients and diurnal snowmelt variations to help in the

prediction of snow or rain and the resulting runoff (Tobin et al., 2011).

The third goal is to establish a semi-automatic calibration procedure and visualization tool

to limit operational uncertainty on the possible range of good performing models. This

is accomplished by constraining parameter ranges and exploiting all hydrograph behavior

information available according to single and combined criteria.

The automatic part of the proposed uncertainty assessment technique is necessary to provide

a relatively easy means for model operators (i.e., calibrators or users) to calibrate catchments

modeled by the flood forecasting model utilized herein. Calibrating the hydrological model

to provide an ensemble of good-performing, multiple working hypotheses is important to

assure the model is more robust to forecast biases (Pappenberger et al., 2007), changing or

unknown hydropower operations (Hingray et al., 2010), and climate change impacts such

as snowmelt regime shifts (Horton et al., 2006). Furthermore, the aim of the visualization

tool is to convey the ambiguity and imprecision of the hydrological model to the users so

that they can be empowered to make decisions knowing the limitations of certainty. In this

sense, the calibration procedure is not entirely automatic because there is a need for some

subjective judgement on the user’s part as to which performance criteria is most important

for certain hydrological behavior at specific times. The multi-criteria visualization interface

offers a unique tool for users to choose the most relevant likelihood measure or combined

likelihood measure to provide a well-performing ensemble of plausible model outputs.

6.2 Materials and methods

This study concerns the Visp and Dranse catchments described in Section 2.2 of this thesis.

Uncertainty analysis and calibration is performed with the RSII hydrological model, described

in Section 2.4. A previous manual calibration of the RSII model was conducted in previous

studies (Jordan, 2007; Garcia Hernández et al., 2009b). This work applies a new semi-automatic

calibration approach which will also provide uncertainty estimations on the flood responses.

The proposed informal method for uncertainty estimation is based on the GLUE methodology

(Beven, 2006) and multi-criteria performance measures (Gupta et al., 1998). The methodology

can be summarized as follows:

1. Zones are determined based on physical characteristics to be able to better explore the

parameter space in each zone;

2. Hydrograph recession limbs are evaluated for all previous flood events to have a general

idea of recession behavior and to constrain the range of recession constants;

3. A first round of MC simulations is run with and without the input improvements (lapse

rates) and process improvements (snowmelt);
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4. A second round of Monte Carlo (MC) simulations is run with improvements to inputs

and processes and a broad range of acceptability in order to conduct a sensitivity

analysis. Parameter values per zone are constrained based on performances given for

each likelihood measure;

5. A visualization tool is used to view the 50 best parameter sets per zone to see zone-

specific performance and possible model characterization deficiencies;

6. A third round of MC simulations is run with a) improvements to inputs and processes

b) constrained parameter ranges per zone and c) a customized weighted likelihood

measures to get the overall best 100 parameter sets per zone.

Details of each step of the methodology are provided below.

6.2.1 Zones for parameter space exploration

The Visp and Dranse catchments are separated into calibration zones based upon the outlet

points, the Swiss hydrological atlas (Weingartner, 2009), the locations of glaciers and the

vegetation line. Zones for the catchments can be seen in Figure 6.1.

Legend
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1 Hohwäng
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5 Visp (Visp outlet)

6 Mauvoisin
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8 Martigny (Dranse outlet)

Calibration points

Figure 6.1: Calibration zones in the Visp and Dranse catchments used to explore the parameter
space.

The zones enable a better look at systematic errors within regions such as poor antecedent

soil moisture conditions or overestimation of recession periods. They provide a means to see

which regions of the study catchments are not well represented by the hydrological model.

Transferring parameter vectors between zones with similar physical properties (e.g., glaciers)

for easier calibration such as in the work of (Bárdossy, 2007) was not feasible in this work;
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although other zones could be assumed to provide good water balances, the variability of the

daily discharge is highly impacted by hydropower operations which differ from zone to zone.

6.2.2 Constraining prior parameter ranges

If the initial parameter range is well-defined within feasible, physically-based limits, it is

more likely for an uncertainty estimation method to find good performing models with MC

simulations. Here the goal is to constrain the parameter range for the release coefficient of

the groundwater reservoir (i.e., baseflow) and the Strickler routing parameter (see Table 6.1)

based on hydrograph recession limbs detailing slow and fast rates respectively.

Recession curve analysis

Representing base flow as an exponential decay function has long been an accepted methodol-

ogy (Barnes, 1939). The theory maintains that, after surface runoff and interflow are depleted,

the recession of flow versus time plot consists typically only of groundwater drainage, i.e. base

flow. The recession hydrograph can be assumed to be an exponential decay process and that

the decrease in flow rate from anytime t to any time t +1 is constant. In exponential form, the

flow rate Q and constant K , representing a characteristic storage delay in the watershed, can

be written as (Brutsaert and J., 1977):

Q(t ) =Qoe−t/K (6.2)

where t is the time (hours) and Qo is the flow rate (m3 s−1) at t=0. Such an approach has

been successful in separating baseflow from the total runoff during storm events (Szilagyi and

Parlange, 1998; Szilagyi et al., 1998).

To quantify mean characteristic storage delays in the watershed based on analyzing recession

curves, Brutsaert (2005) describe in detail two methodologies which assume that the time

dependence of the flow rate in a river can be characterized by an exponential decay process.

The first method uses a semi-logarithmic plot of Q versus t to identify the base flow recession

graphically as the ’straight’ lower envelope of a number of tail end sections of low flow recession

hydrographs. By shifting the slopes horizontally until the best coincidence is obtained, the

value of -K −1, or the average base flow residence time is obtained.

Based on this method, the fast and slow recession constants were analyzed for all flood

hydrographs between 1984 and 2008 (which includes 6 large flood events) in each zone. Two

typical examples are represented here. Figure 6.2 shows the log transform of the discharge for

the Biel stream gauge during the 1993 flood and the Visp gauge for the flood event in 2000.

(The diurnal pumping cycles and daily melting cycles are also recaptured in the system.)
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Figure 6.2: log dQ vs. t plots for a) 1993 flood at the Visp outlet b) 2000 flood at Biel calibration
point. Both the slow and fast responses are visible in the semilog plot.

The second approach used to characterize the catchment residence times utilizes plots of Qi

versus Qi+1 where the exponential outflow function, Qn , is represented by the following form:

Qn =QoK n
r (6.3)

in which Kr = Qi \ Qi−1 is the depletion ratio, n = t \∆t is the number of time intervals of

duration ∆t from the beginning of the recession, when t is assumed to be zero and Qi is the

rate of flow at the i th time interval.

Once again, all flood hydrographs were analyzed between 1984 and 2008 to determine a range

in the Kr values. Figure 6.3 shows the 1993 flood case at the Visp gauge. The value of Kr , the

rate of groundwater storage depletion, is obtained from the slope of the lower envelope. This

Kr factor can be expected to depend on the same soil, aquifer and basin characteristics as K

from Equation 6.2.

Analysis of the recession curves for the flood events in the Visp and Dranse basin (not shown

here for the sake of brevity) demonstrated that the Dranse basin has a similar fast-slow re-

sponse as the Visp. Both have linear base flow recessions when evaluated in exponential form

supporting the use of a linear relation in the RSII groundwater model. However, the K values

are different between the catchments and between the zones within the catchments due to

contrasting physical characteristics such as slope, aquifer thickness, hydraulic conductivity

and soil porosity. Moreover, the K values are not only catchment and sub-catchment depen-

dent but are influenced by seasons (including diurnal glacial melt) and extractions due to

hydropower use.
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It should be noted that flood events for the Visp and the Dranse catchments have occurred in

the spring through autumn seasons. To date, six significant flood events have been recorded

in both catchments. The discharge signal of other strong precipitation events was often not

visible due to hydropower operations. With such a limited event database, it was not possible

to perform a statistical analysis on the K values on a seasonal basis or lumped or to create

a reliable master recession curve (Lamb and Beven, 1997). As a result, the extremes of the

K values after an analysis of all recession hydrographs during the flood events were used to

set the initial parameter ranges per zone for the fast and slow responses in the groundwater

model (see Table 6.1).

Of the parameter ranges listed in Table 6.1, it should be noted that the groundwater and

Strickler coefficients are not entirely physically-based. Many state variables of similar semi-

lumped models do not exactly represent any physical quantity and are used rather to describe

model states (HBV). In the case of the RSII model, the Strickler coefficient range is broad and

cannot be related directly to channel roughness and sinuosity properties (i.e., the inverse of

published Manning values). Accordingly, this parameter is used more for tuning the runoff

reservoir such as to minimize the differences between simulated and observed discharges.

Overall, for real-world systems in hydrological modeling, only the observed discharge can be

used to estimate the states of a large set of parameters due to a lack of verifiable data and the

difficulty of measuring the parameter values in the field on a catchment-scale. Fortunately, if

parameter values are calibrated such that the entire hydrological year, the somewhat heuristic

choice of parameter values begins to have a more consistent basis from one hydrological year
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Table 6.1: Reference hydrological model parameters for Monte Carlo simulation (LB and UB
are lower and upper bounds)

Snow model
Parameter (unit) LB UB Source
Snow degree-day factor (mm day−1

◦C−1)
1.3 11.6 Sigh et al. 2000; Hock, 2003

Infiltration model
Release coefficient of groundwater
reservoir (hr)

0.1 500 Recession curve analysis

Maximum height of groundwater
reservoir (m)

0.5 2

Glacier model
Coefficient of linear snow reservoir
(hr)

4 18 Klok et al. 2001

Coefficient of linear glacier reservoir
(hr)

0.2 15 Baker et al. 2002

Glacier degree day factor (mm day−1

◦C−1)
5 20 Rango and Martinec, 1995

Overland flow model
Strickler coefficient (m1/3s−1) 0.1 75 Recession curve analysis

to the next.

In the case of the Swiss Alps, calibration must initialize states in September in order to prop-

erly account for the parameters influenced by the initialization of snow water equivalent.

Unlike in rainfall-dominated basins, where discrete precipitation events must be captured,

the snowpack integrates individual precipitation events throughout the winter season. As a

result, accurate calibration of snowmelt-dominated catchments such as the Visp and Dranse

must include properly accounting for total snowpack and melt processes (which are largely

influenced by maximum temperatures) (Hay and Clark, 2003).

Performance and likelihood measures

To reduce the subjectivity of likelihood measures in the GLUE methodology, five performance

measures are evaluated independently and combined after rescaling to analyze hydrograph

behavior such as base flow and time to peak (see Table 6.2). The multiple performance mea-

sures have been chosen based on the work of Reusser et al. (2009) who demonstrated that

multiple measures provide a better characterization of the temporal dynamics of hydrographs

and can provide a clearer picture of structural model deficiencies. In this approach, indi-

vidual performance measures are used to provide an idea of specific hydrograph behavior

demonstrating where the model is not well-defined in preliminary simulations.
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Table 6.2: Performance Measures (LB and UB are lower and upper bounds)

Performance Measures
LB U B

Absolute value of peak, APK (%) 0 ±10
Nash-Sutcliffe efficiency, NSE (-) −∞ 1
NSE log of discharge, NSEL (-) −∞ 1
Mean absolute relative error, MARE(-) 0 +∞
Absolute value of volume, AVL (%) 0 ±10

The most important goal for flood forecasting is to predict the timing and amplitude of the

extreme event peak. The absolute value of the peak (APK) performance measure has been

developed so that simulations are accepted only within a window of ± 6 hours of the measured

peak. Such an approach emphasizes the importance of having the peak within a precise limit

of acceptability for flood alert forecasting and hydropower decision-making. Furthermore, in

the context of flood forecasting, it is critical to adhere to this performance measure because

global performance measures are much less meaningful when lead times to flood events are

short.

In addition to the peak criterion, the Nash-Sutcliffe efficiency of the log of the discharge is

used to emphasize matching base flows (referred to hereafter as NSEL). The Nash-Sutcliffe

efficiency criterion (NSE) is also used directly on the discharge to determine coincidence with

peak flows. The NSE criterion based on squared errors is useful in mountainous terrain which

have flashy hydrologic responses and can be subject to large rainfall and rain-on-snow events

(Fleming et al., 2010). However, as the NSE includes the squared error, this criterion can be

quite sensitive to outliers. Furthermore, as demonstrated by Schaefli and Gupta (2007), the

use of the mean observed discharge value as the benchmark in the NSE criterion can be a poor

predictor in the case of strongly seasonal time series. This can be considered the case for both

the Visp and Dranse upper subcatchments which are highly impacted by snow and glacier

melt during the spring and summer seasons. As a result, to limit the bias of outliers and the

mean observed discharge, the Mean Absolute Relative Error (MARE) is also used to measure

the overall model performance. Furthermore, a ratio of the absolute value of the measured to

simulated volume (AVL) is used as an overall performance measure where ± 10-20 % from the

measured volume is the range for the limits of acceptability.

Particular to this hydrological model, there are zones within the complex, alpine catchments

which have been proven to be poorly represented by the model due to aleatory and epistemic

uncertainty associated with a) unknown reservoir operations, b) pumping and re-distribution

of water between zones and c) non-linearities of the basin. As a result, by solely setting

fixed thresholds for the 4 performance measures other than the strict Peak criterion (i.e.,

the NSEL, NSE, MARE and AVL measures), it was recognized that it was not possible to find

acceptable simulations in poorly modeled calibration zones for certain performance measures
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(or conversely too many acceptable simulations were found with too low a threshold in well

modeled zones).

Effectively, a customized weighted likelihood measure was developed to consider all 4 mea-

sures without rejecting potential solutions if they do not adhere to one or more of the criteria,

similar to the work of Seibert and McDonnell (2002); Beven (2004). In this approach, each

of the 4 performance criteria were rescaled between 0 and 1 (0 being the worst and 1 the

best) to define a likelihood measure. Likelihood measures enable a probabilistic analysis of

the hydrograph behavior. The MARE criterion is also transformed to (1-MARE) to coincide

with the 0(worst) and 1(best) limits. The AVL criterion ± 10-20 % is transformed to be one

minus the absolute value of the volume difference normalized by the measured volume so

that it can be rescaled as a probability between 0 and 1. All 4 criteria are weighted according

to the weighted criterion (WC), Equation 6.4. These weights have been determined based

on giving preference to high flow criteria, namely the NSE and AVL criteria (again, the MARE

is focused on long-term performance and the NSEL criterion is geared towards analyzing

low-flow performance). Cumulatively, the WC criterion has a score between 0 and 1 (again 0

being the worst and 1, the best):

WC = 0.3(NSE)+0.2(1−MARE)+0.3(1− AVL

(Measured Volume)
)+0.2(NSEL) (6.4)

The best parameter sets are then determined moving from upstream to downstream zones by

first choosing those sets which adhere to the limits of acceptability of the Peak, APK, criterion.

Subsequently, the scores of the WC measure are stored per zone and sorted. The 100 best

parameter sets for the most upstream zone with the highest scores are saved for analysis

with the downstream zones. In effect, this technique exploits all the criteria information and

considers the performances in zones independently to adapt to the reality that the model is

able to better predict hydrological processes in certain zones versus others.

6.2.3 Inputs and processes

To address high input uncertainty associated with the sparsely gauged catchments considered

(most notably at upper elevations), input temperatures are interpolated by using a temporally

variable temperature gradient. Linear regression of the meteorological service station temper-

ature measurements with elevation in the Valais indicate that the lapse rates change seasonally

and they are based on wet and dry periods. Wet versus dry was determined by taking a moving

average over a week-long period for the precipitation time series. Only windows with mean

precipitation intensity over 0.2 mm/h were taken as wet periods. See Table 6.3.

In spite of these general trends, the high variability of the lapse rates between years and

seasons indicates that in this complex alpine region they cannot be generalized as constant.

Supporting the results of Chapter 3 in this thesis and previous studies (Blandford et al., 2008;

Minder et al., 2010), variable lapse rates on an hourly scale are necessary for accurately
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Table 6.3: Lapse rates for all MeteoSwiss ANETZ meteorological stations in the Valais (◦C
m−1/1000)

Annual Autumn Winter Spring Summer
Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

1987 -4.7 -5.5 -4.2 -5.4 -3.1 -4.9 -6.1 -6.1 -5.8 -6.2
1993 -5.0 -5.7 -4.9 -5.6 -3.4 -5.3 -6.7 -6.1 -6.0 -6.2
1994 -5.3 -5.7 -4.7 -5.8 -4.7 -5.2 -6.4 -6.4 -5.9 -5.3
2000 -5.1 -5.7 -4.7 -5.4 -3.7 -5.5 -6.1 -6.0 -6.0 -6.2

detailing temperature gradients to better characterize the transition from rain to snow in alpine

environments. Due to the difficulty in defining variograms with highly skewed distributions

(i.e., precipitation intensities of 0 mm h−1 for extended periods of time) and computational

time constraints including long run-times, it was not feasible to apply the kriging with external

drift methodology of Chapter 3 for the hydrological year analyses of this study. Based on

previous analyses, linear regression is considered to be a robust minimalist approach to

ensure the dependency of temperature on altitude (Hudson and Wackernagel, 1994).

To address endemic structural error (Beven, 2009) the new snow melt method proposed in

Chapter 5 of this thesis has been incorporated into the hydrological model. This method

provides diurnal variations of the calibrated degree-day factors for the calibration zones of the

catchments (see Figure 6.1). It has been well-established that temperature is a physical variable

controlling the rates of longwave radiation and sensible heat flux and is highly correlated to

the three most important energy sources which determine snowmelt (incoming longwave

radiation, absorbed global radiation (shortwave) and sensible heat flux) (Hock, Ohmura,

Rango and Martinec). As shown by radiation measurements taken in the Dranse catchment, a

diurnal cycle given by a quasi-sinusoid function is able to mimic the radiation as shown in

Figure 6.4. The mean of this function is preserved as the calibrated degree-day factor for each

zone. See more details of this method including mathematical formulations in Chapter 5 of

this thesis.

Monte Carlo simulation framework

A sampling tool called RSPilot was created to automatically perform a random search on

feasible parameter sets from a prior uniform distribution within the ranges defined in Table

6.1. Two thousand MC simulations were conducted in the first round of simulation for three

cases (with and without model input and process improvements) while 5,000 MC realizations

of the model were conducted in the 2nd and 3rd rounds. For the three rounds of simulations,

the parameter sets are varied to enable the creation of a response surface. A uniform random

sampling strategy is initially used due to a lack of knowledge on prior probability distributions

for effective values of parameters and their covariations. It is assumed here that there is not
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Figure 6.4: Radiation with overlaying quasi-sinusoid function used to impose diurnal variabil-
ity for the snow degree-day factor with the mean of the function preserved as the calibrated
value of the degree-day factor.

enough information to define informative priors from which to sample, so a uniform random

sampling strategy plus a multi-criteria approach is effective at identifying scattered regions of

behavioral simulations on the response surface of a complex model space.

For the first round of simulations, the original model performance (case 1) is compared with

the performance with the proposed input improvement (i.e., variable lapse rates) (case 2) and

the proposed process improvement (i.e., imposed diurnal melt variability) (case 3). Effectively,

2000 simulations are run for each case. All parameter values are selected from the limits

defined in Table 6.1.

Similar to the work of Winsemius et al. (2009), the second round of MC simulations is con-

ducted for a hydrological year as a learning tool. However, the second round of MC simulations

is used to constrain the parameter limits on the basis of the sensitivity analysis, rather than

the limits of acceptability as in Winsemius et al. (2009). A broad acceptability range (0 to

1 in the cases of MARE, NSE, NSEL and ± 20% in the case of the AVL and APK criteria) is

used so that the sensitivity analysis can demonstrate the possible range of performance for

a parameter relative to the parameter set to which it belongs. The broad range is necessary

for flood calibration because there is a limited number of events available to estimate the

variability of parameters.

The sensitivity analysis enables an investigation of the reaction of the model (in terms of

discharge) to changes in parameters. Dotty plots are used to show projections of points on a
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likelihood surface onto a single parameter axis (Beven, 2004). Histograms are used to show

marginal distributions of the best performing parameter sets relative to a specific parameter.

Analysis with both these methods shows which parameters are more sensitive, on a relative

basis.

The third round of MC simulations is used to apply the customized WC criterion to find

the best 100 parameter sets. The constrained parameter value limits and the input/process

improvements are incorporated into this final round of analysis.

Interactive visualization

The visualization tool integrated into the operational version of the RSII flood forecasting

model enables acceptable simulations to be viewed relative to the measured discharge im-

mediately following the MC simulations (Figure 6.5). This tool enables one to look at the

performance based on criteria individually, similar to looking outside the Pareto optimal

surface to find other acceptable working hypotheses. Specific hydrograph behavior can sub-

sequently be addressed; for instance, if the APK and AVL likelihood measures do not show

many acceptable simulations, the range for the maximum height of the groundwater reservoir

is adjusted to obtain better volumes. Moreover, if during spring melt simulations, the NSEL

measure does not show many acceptable simulations, the range for the melt coefficients is

altered accordingly.

Figure 6.5: Example of visualization interface showing the customized weighted criterion per
calibration zone in the Dranse catchment.

In addition to demonstrating performances based on individual likelihood measures, this

tool shows a comparative analysis between two of the simplest means of combining multiple
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likelihood measures, the fuzzy union and intersection (Beven, 2004). A fuzzy union emphasizes

the best performance of each model over all the measures considered. The fuzzy intersection

shows the worst performance which adheres to all likelihood criteria. The intersection exploits

more of the information from each criteria, however, if any of the measures are zero, taking a

fuzzy intersection leads to rejection of the model. Both are simple concepts which are useful

to communicate if the model produces all-around good hydrograph behavior. However, the

union and intersection can be seen to be too optimistic or pessimistic respectively where

neither fully utilizes the information provided by multi-criteria in all cases.

With such a broad extent of adaptability in measuring performance, the validation tool is

the novelty of this work because it enables a means to compare individual and combined

likelihood measures. To the author’s knowledge, such a tool which can easily be adapted to

the specific modeling needs (e.g. prediction of spring floods dominated by snowmelt) has not

yet been developed.

To facilitate the use of this tool for operators, the tool includes an interactive interface where

the mouse can be used to choose among the simulations. Users can choose the simulations

which provide the best responses visually such as capturing peak flows. Although this func-

tionality adds a layer of subjectivity, it enables the user to place emphasis on the parts of the

hydrograph behavior which are most critical to match. In addition, the mouse click provides a

unique identifier for the parameter set used to generate a specific simulation so that it can

be used for quick validation with other event databases (since acceptable parameter sets are

automatically saved).

6.3 Results

6.3.1 Round 1 MC simulations: Input and process improvement analysis

Variable lapse rates

By enabling the lapse rates to vary in time, it is possible to capture a much greater quantity

of acceptable parameter sets for the calibration zones. In Figure 6.6, it can be seen that in

the Dranse catchment at least two times more parameter sets have acceptable performances.

Comparison statistics are found in Figure 6.6. Furthermore, of the parameter sets, the highest

performances are achieved in each calibration zone using variable lapse rates, with a par-

ticularly evident improvement for the Châble calibration point. Such results indicate that a

constant lapse rate (the standard, -0.0065 ◦C m−1 for an atmospheric profile) is not representa-

tive of the dynamics of temperatures in the catchments (similar results are seen with the Visp

catchment). Improper temperature interpolations highly impact the rain/snow delineation

and the resulting runoff. These results confirm the findings in Chapter 3 of this thesis.
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Figure 6.6: Performance comparison for the 2000 calibration event in the Dranse catchment,
(MARE versus NSE) at calibration points a) Mauvoisin, b) outlet of Dranse catchment at
Martigny and c) Châble. Left and right indicate hydrological model performance with a
constant lapse rate and with variable lapse rates respectively.

Diurnal snowmelt

Snowmelt process characterization was tested using the original classical degree-day (CD)

method and the proposed, time-variable degree-day (TD) method proposed in Chapter 5

of this thesis. Calibration of the TD method involves calibrating the refreezing factor, ar ,

the amplitude factor β, and the degree-day factor for snow as while calibration of the CD

method involves calibrating the refreezing factor, ar , and the degree-day factor ac . In this

preliminary analysis, 2000 simulations were run for a fixed parameter set, varying only the 2

or 3 parameters of the melt methods. As demonstrated in Figure 6.7, the diurnal variability is

much better represented by the TD method at the Visp outlet during August and September

2000, two months that are signficantly affected by snowmelt in their upper catchments. The

coefficients of determination (R2 values) for the discharge from the CD and TD methods with

respect to the measured discharge are 0.4 and 0.7 (-) respectively. Fluctuations in the data

are due to a combined effect of hydropower pumping schemes and the diurnal cycle of snow

and glacier melt. This is why the CD method can capture some diurnal fluctuations in spite

of its constant value within each zone. By analyzing the mean daily temperature difference

along with the diurnal variations, it is clear that the TD method has an apparent advantage,

particularly when the daily temperature difference is large. These results support the findings

in Chapter 5 of this thesis.

Based on these results, both the input and process improvements were fully integrated into

the hydrological model and used in the subsequent analyses to calibrate the hydrological

model and find an ensemble of plausible model outputs.
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Figure 6.7: Spring diurnal variations at Visp, 2000 showing improved variability using TD
method in RSII hydrological model.

6.3.2 Round 2 MC simulations: Sensitivity analysis

A sensitivity analysis was conducted to investigate the reaction of the model (in terms of

discharge) to changes in parameters. In Figures 6.8a-d, each point corresponds to an entire

parameter set. In Figures 6.8a and b, it can be seen that for both the 2000 calibration event and

the 1993 validation event, the glacier degree-day coefficient has a much better performance in

terms of the MARE likelihood measure between the ranges of 2 and 7 mm day−1 ◦C−1 with

slight variations depending on the calibration zone. Effectively, the parameter ranges are

reduced during the third round of Monte Carlo simulations.

A generalized histogram for all the zones in the Visp catchment in Figure 6.9 shows the

marginal distributions for the maximum height for the groundwater reservoir relative to the

NSE criterion. Similar to the glacier degree-day coefficient, the parameter can be limited in

order to achieve the best performance.

Effectively, both the degree-day factor for glacier and the maximum groundwater height

appear to be the most important parameters controlling uncertainty in the model output.

Their respective parameter ranges have been constrained as indicated in Table 6.4. Confining

the parameter range can be considered a risk with few simulations (relative to the millions that

have been typically generated with the GLUE methodoloy for simpler hydrological models

(Iorgulescu et al., 2005)). However, due to the fact that zero, or practically no good-performing

parameter sets are found with higher degree-day coefficients, it is assumed that there is a very

low chance in finding good parameter sets outside of the range.

Furthermore, by looking at the cumulative distribution functions (cdf), Figures 6.10a and

b shows that the snow degree-day factor is sensitive, particularly for the 2000 event. In
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b) 2000 in the Visp. Dotty plots for the release coefficient of groundwater reservoir versus the
MARE criterion for c) 1993 and d) 2000 in the Visp.

Table 6.4: Constrained hydrological model parameters for Monte Carlo simulation (LB and UB
are lower and upper bounds)

Snow model
Parameter (unit) LB UB
Snow degree-day factor (mm day−1 ◦C−1) 2 10

Infiltration model
Maximum height of groundwater reservoir (m) 0.1 1.2

Glacier model
Glacier degree-day factor (mm day−1 ◦C−1) 2 7

Figures 6.8c and d, it can be also seen that better performances can be achieved with higher

groundwater infiltration coefficients, although the difference is slight. The most noteworthy

finding in Figures 6.8c and d is that performance, as suggested previously, is highly dependent
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Figure 6.9: Marginal distributions for the maximum height for the groundwater reservoir
relative to the NSE criterion (≥ 0.5) in the Visp catchment.

on the calibration zone.

In contrast, poor identifiability and high uncertainty are associated with the residence time

parameter for the base flow in spite of the restricted, physically-based parameter range de-

termined through recession analysis (Figure 6.10c and d). In this case, the model output is

not sensitive to variations in parameter values because the parameter distribution remains

uniform; one can select any value for this parameter within the given range to obtain an

optimal performance. This parameter is not constrained any more than the recession analysis

suggested as a result.

Interestingly, the different performances within each zone support the original notion that

some zones are better described by the hydrological model versus others. This highlights the

usefulness of the customized weighted likelihood measure developed in this study to rank

the performances rather than rejecting potentially good parameter sets based on subjective

threshold limits.

6.3.3 Visualization Tool

Results with the visualization tool emphasize the need for a weighted measure to choose the

correct criteria. In Figure 6.11, it can be seen that using solely an intersection (bottom right of

Figure) gives a false impression of the best performance The intersection misses all parameter

sets that might be just below the Pareto optimal surface for one certain criteria, however, it is

shown here that some parameter sets clearly capture the peak and volume of the flood events.
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of parameters for unacceptable simulations based on the NSE criterion ≥ 0.5(−). All random
parameter values are taken from a uniform distribution.

6.3.4 Round 3 MC simulations: Application of weighted criterion

Based on the constrained parameters determined in the sensitivity analysis, a third round of

Monte Carlo simulations was performed. Results indicate that the semi-automated uncer-

tainty analysis provides better performing parameter sets for each zone within the Dranse and

the Visp for both the calibration and validation event, which in most cases captures the flood

peak. This can be attributed to using the strict limits of acceptability with the peak criterion.

Overall, as compared to results from a previous manual calibration (Jordan, 2007), higher NSE

and APK measures for all catchments are achieved for the calibration and validation events

with this customized uncertainty estimation technique (Table 6.5).

It should be noted that the 1993 validation event in the Visp catchment demonstrated poor

performance in terms of volume and peak. Figure 6.13 indicates that there is not enough input

volume within the hydrological model for this event. This is most likely attributed to the lack
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Figure 6.11: Visual interface showing individual likelihood measures and a combined measure
for each calibration zone within the Dranse catchment.

of input data at this time indicating this calibration method cannot fully account for epistemic

errors, particularly in the high elevation regions where sparse measurements are available.

Furthermore, Chapter 3 of this thesis demonstrates that the IDW interpolation approach for

precipitation is insufficient to produce appropriate runoff volumes whereas, over a flood event,

given a robust variogram and including anisotropy, the kriging with external drift methodology

can significantly improve the hydrograph response in terms of peak and volume. As previously

explained in Section 6.2.3, generating variograms prior to flood events prohibits the use of this

kriging method operationally, at the moment, because zero precipitation is frequent making

residual distributions highly skewed. Testing the recommended kriging method of Chapter 3

by transforming precipitation residuals into the Gaussian domain and updating the robust

variogram real-time when precipitation events occur is therefore left for future work.
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Table 6.5: Final performances with respect to the APK (Peak) and NSE (Nash-Sutcliffe effi-
ciency) likelihood measures for Manual Calibration (MC) and Customized Calibration (CC).
NA indicates the discharge gauge was damaged during the flood event, so peak values are
unknown while the NSE criterion is calculated over the remainder of the hydrological year.

Dranse
APK NSE

2000 1993 2000 1993
MC CC MC CC MC CC MC CC

Châble − 47% − 10% − 22% − 8% 0.3 0.6 0.0 0.51
Dranse − 44% + 5% − 47% − 10% 0.4 0.77 0.0 0.6
Mauvoisin − 62% − 9% − 54% + 5% 0.75 0.77 0.8 0.83

Visp
APK NSE

2000 1993 2000 1993
MC CC MC CC MC CC MC CC

Visp − 27% − 9% − 72% −55% 0.36 0.74 0.45 0.48
Biel − 44% − 8% + 7% − 9% 0.29 0.62 0.4 0.55
Balen NA NA NA NA 0.5 0.7 0.59 0.61
Mattmark + 10% − 10% − 59% − 8% 0.71 0.73 0.59 0.62
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6.4 Conclusions

This research demonstrates a semi-automatic uncertainty estimation method and visualiza-

tion tool for the calibration of a hydrological model used in operational flood forecasting in

the Swiss Alps. Due to inherent errors in hydrological modeling input and model structure,

this tool emphasizes the concept of multiple working hypotheses where a range of plausible

model outputs based on equally performing parameter sets are provided. This tool enables the

exploration of parameter model spaces and it provides users a means to gain more certainty

on the choices of parameters which produce good model performances. Sensitivity analyses

enabled the parameter ranges to be constrained. Hydrograph behavior was evaluated based

on analyzing individual likelihood measures and using a visualization tool. Best method

performances were evaluated based on using a customized weighted likelihood measure

to rank performances per calibration zone. Results indicate that temporally variable lapse

rates provide a greater number of good performing parameter sets, and diurnal variability of

discharge is better achieved with a time variable degree-day factor for snow. Also, the weighted

criterion measure is effective in detailing parameter sets that perform well.

Overall, in each calibration zone, better performances are achieved relative to manual cal-

ibration. The improvements can be attributed to the use of multi-criteria and a unique

visualization tool which enables the analysis of plausible model ensembles. Further testing of

these tools is required to ensure that they are reliable and can effectively reduce uncertainty

for water resource managers. Due to the random search method utilized which was slow to

sample parameter sets because of long computational times, it is recommended to integrate

more efficient sampling procedures in the future. Also, more ‘soft’ data and fuzzy performance

measures can be used to incorporate expert knowledge or data of different timescales. Fur-

thermore, it is recommended to integrate geostatistical methods to interpolate forcings in an

operational environment so that runoff volume generation can be improved.
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A primary challenge for flood forecasting in complex, mountainous terrain is reducing pre-

diction uncertainty. This research has addressed this issue by improving the hydrological

modeling component of the RSII flood forecasting model used in the Swiss Alps and asso-

ciating plausibility ranges to model predictions. The chapters of this thesis have discussed

methodologies adapted specifically to mountainous regions to better define the distribution

of inputs, the description of snowmelt processes and the reduction of output uncertainty. All

chapters deal with the common difficulty of characterizing complex, hydro-meteorological

processes when limited measurements are available for validation.

Chapter 3 of this thesis demonstrates that hydrological model uncertainty can be reduced by

improving the spatial interpolation of inputs to obtain correct flood volumes. Kriging with

external drift is demonstrated to be an effective geostatistical method to estimate precipitation

and temperature fields for Alpine terrain. Results indicate foremost that this method enables

highly accurate predictions of discharge volumes and peaks during flood events. Elevation

as external drift is also shown to be the determinant factor for improving snow/rainfall par-

titioning and melt estimations over the study region. Particular to this study is the use of a

non-standard variogram which proves to be a robust means to detect correlations between

the limited meteorological forcing measurements (classical variograms failed in this respect).

Variogram analysis shows that significant anisotropy (induced by dominant wind and oro-

graphic patterns) is detected in field data and its effect thus needs to be accounted for in

spatial interpolation.

It is recommended that the interpolation methodology of Chapter 3 be fully integrated into

the real-time RSII operational flood forecasts. This method also has the potential to provide

better input estimations for other ensemble hydrological models used in Alpine contexts, most

notably those used in the Common Information Platform for Natural Hazards in Switzerland

(OFEV, 2010). With a better distribution of input data in the future, particularly in Switzerland
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(Romang et al., 2011), the ability to generate reliable variograms and the accuracy of this

method will undoubtedly improve. A key component to the success of this interpolation

method is the chosen variogram. As limited studies have used this variogram, it is recom-

mended to continue geostatistical analyses to further understand the potential and limitations

of this variogram. Furthermore, it was a deliberate decision to use this geostatistical method

because other studies have demonstrated good performances with this method when using

radar as an external drift factor (Krajewski, 1987; Haberlandt, 2007; Velasco-Forero et al., 2008).

It is expected that once a radar is installed in the Valais region, better performances will be

achieved with this method.

The inputs to the hydrological model are further improved in Chapter 4 of this thesis. Prior

to this improvement, the hydrological model used the common approach of utilizing dry,

ground temperature measurements to calculate the snowfall limit. However, this research has

demonstrated that accounting for the wet bulb temperature is critical to accurately define the

snow/rain transition. COSMO reanalyses, which considers the wet bulb temperature in their

snowfall limit calculations, is used as input to the hydrological model. Results indicate that the

proposed method to integrate COSMO reanalyses significantly improves runoff simulations

during the spring, which is a critical time for flood development when most Alpine catchments

are close to saturation.

Although COSMO output has previously been integrated into hydrological models to provide

a grid of meteorological forcings, the study in Chapter 4 was novel in its attempt to transfer

meteorological knowledge on wet bulb information from COSMO reanalyses into hydrology.

Further tests are therefore required to test the rigor of this method and the viability of using

COSMO reanalyses (or forecasts in an operational context), particularly as the resolution of

COSMO models becomes finer in the future. Most importantly, extremely limited hydrological

studies have tested the use of wet bulb temperature measurements in determining lapse

rates. Such an approach could be a simple means to improve hydrological predictions in

mountainous terrain where an inaccurate temperature lapse rate has significant consequences

on defining runoff contributing areas.

Chapter 5 of this thesis demonstrates the potential of a new minimalist snowmelt formula-

tion. This method uses a quasi-sinusoid function to enable daily minimum and maximum

temperature data to mimic diurnal radiation cycles. This approach is compared with the

commonly used potential radiation-based Hock approach (Hock, 1999) which has success-

fully modeled sub-daily snowmelt in numerous previous studies. The robustness of these

methods is validated on a unique wireless, distributed dataset (Ingelrest et al., 2010), which

enables a comparison of the approaches based on different temperature distributions. Results

indicate that both methods are comparable in terms of generating potential melt. However,

the performances of the methods can depend on the dominant exposition of the dataset. In

effect, this study has brought to light that snowmelt methods require a good representation of

the spatial variability of temperature (i.e., realistic lapse rates) to correctly model the spatial

variability of snowmelt.
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It is recommended to conduct future analyses with distributed meteorological observations

during the spring snowmelt season. Additional field campaigns can help elucidate how well

the snowmelt methods perform as a function of exposition. Furthermore, as the minimalist,

proposed melt method has only been tested in these limited cases (yet has potential to be

applied in high mountainous environments which are limited in data), it is recommended

to further examine the method’s robustness with hourly snowmelt databases extending over

several melt seasons.

The application of a spatially-explicit hydrological model used to test the snowmelt method

performances has been found to be an integral part of the analysis of Chapter 5 (Rinaldo

et al., 1995). It is recommended to continue to exploit such an approach due to its physical

description of water particle travel times in channeled and hillslope states, where hillslope pro-

cesses are particularly dominant in complex morphology such as the Swiss Alps. Furthermore,

this spatially-explicit approach is a good reference for a wide range of hydrological modeling

applications from lumped to semi-distributed because source areas are defined based on

homogeneous snowmelt or rainfall contributing areas; as long as the correlation scales of

rainfall events or snowmelt contributions over source areas are larger than the area of the

subcatchments themselves, the model enables any snowmelt or rainfall pattern to be routed to

the outlet. By explicitly describing path probabilities, this approach also allows the catchment

to gauge only certain hydrologic pathways as time elapses. The time evolution of the path

probability, and hence of the selected pathways, is dictated by the relative inflow distribution

through rain and melt (related to altitude, exposure and other factors). For instance, if no

snowmelt at all occurs in a given source area of the catchment at a given time, its morphology

goes unseen by the response at the same time. In contrast, when a sizable proportion of

inflow characterizes the source area, its contribution and the related shape of the basin can be

detected.

Future work should explore the idea of inverse modeling the discharge signal to determine

which source areas are activated over time. Such a study can be useful to determine which

regions influence the fluctuations of saturated antecedent soil moisture conditions and hy-

drograph behavior as well as answer when specific source areas contribute to dynamic flood

responses. A deconvolution of the discharge with the total melt signal can be used to show

the individual contributions of each source area. Deconvolution with the GLUE approach

exercised in this thesis could be used to determine weights which scale the source area melt to

elucidate its contribution to the output discharge. Such an analysis would depend on properly

sizing source areas for a reasonably-sized catchment; source areas must not be too finely

discretized to be able to distinguish between different source area signals, and the catchment

must not be so large that diurnal snowmelt cycles are dampened.

Furthermore, by predicting maximum saturation conditions and identifying flow directions

for synoptic scale precipitation events that are aligned with the main axes of catchments, it

can be possible to define the most damaging flood conditions or impacts from ‘the perfect

storm’ for catchments in the Valais with the use of the spatially-explicit model. By simulating
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peak rainfall impulses which are aligned with the advection of peak flood responses, it can be

possible to demonstrate the worst possible hydrological conditions which can occur in Alpine

regions assuming a saturated snowpack and rain-on-snow conditions. Preventive scenario

analysis can then be performed with the RSII model such as by adjusting reservoir levels to

determine how to best mitigate potential flood damage.

The final chapter of this thesis demonstrates the performance of a customized uncertainty

estimation technique and software tool used to assign plausibility ranges to flood predictions.

The technique utilizes a visualization interface to display model ensembles and multi-criteria

performance measures for the calibration of the hydrological model. Results indicate that

by integrating the input and process improvements from Chapters 3-5 of this thesis into this

method, the hydrological modeling output error is reduced and calibration achieves a better

range of plausible model outputs.

Further tests with this uncertainty estimation technique and calibration tool are required

to test the rigor of the approach, particularly the inherent subjectivity of the visualization

interface. The visualization tool of this research is key because it enables a means to com-

municate the inherent uncertainty of hydrological modeling to water resources managers

particularly the idea that uncertainty highly depends on the performance measure utilized.

Future work could also incorporate the use of ‘soft’ data such as monthly reservoir water

balances (Winsemius et al., 2009) to reduce the sensitivity of all the aforementioned methods

to the impact of limited station data available. Point measurements which contain extractable

information for model calibration should also be considered (Schaefli, 2011) and perhaps in a

fuzzy context (Bárdossy, 2005).

Most importantly, future research lanes with the calibration tools developed herein must

include better quantification of the uncertainty cascade (Pappenberger et al., 2005) produced

when the hydrological model, calibrated with measured data, begins to use Limited Area

Model probabilistic forecasts as inputs. Although research has shown promising results in

using statistically downscaled Limited Area Model output, it will most likely be necessary

to use correction biases such as magnitude correction factors to obtain better temperature,

precipitation and resulting runoff time series (Hay and Clark, 2003). Fortunately, advances in

data assimilation have demonstrated sophisticated developments such as extended Kalman

filtering which can address state and error updating (Liu et al., 2012). However, few studies

have quantified the efficacy of data assimilation real-time. Furthermore, studies must be con-

ducted on the impact of merging uncertainty ranges from forecasting inputs and hydrological

model ensembles. It will undoubtedly be critical to test the best means to validate combined

uncertainty ranges when the flood forecasting model becomes fully operational.
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